首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sublingual salt gland is the primary site of salt excretion in sea snakes; however, little is known about the mechanisms mediating ion excretion. Na+/K+–ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are two proteins known to regulate membrane potential and drive salt secretion in most vertebrate secretory cells. We hypothesized that NKA and NKCC would localize to the basolateral membranes of the principal cells comprising the tubular epithelia of sea snake salt glands. Although there is evidence of NKA activity in salt glands from several species of sea snake, the localization of NKA and NKCC and other potential ion transporters remains unstudied. Using histology and immunohistochemistry, we localized NKA and NKCC in salt glands from three species of laticaudine sea snake: Laticauda semifasciata, L. laticaudata, and L. colubrina. Antibody specificity was confirmed using Western blots. The compound tubular glands of all three species were found to be composed of serous secretory epithelia, and NKA and NKCC were abundant in the basolateral membranes. These results are consistent with the morphology of secretory epithelia found in the rectal salt glands of marine elasmobranchs, the nasal glands of marine birds and the gills of teleost fishes, suggesting a similar function in regulating ion secretion.  相似文献   

2.
Among tetrapods, evidence for postrenal modification of the urine by the distal digestive tract (including the colon and cloaca) is highly variable. Birds and bladderless reptiles are of interest because the colon and cloaca represent the only sites from which water and ions can be reclaimed from the urine secreted by the kidney. For animals occupying desiccating environments (e.g., deserts and marine environments), postrenal modification of the urine may directly contribute to the maintenance of hypo‐osmotic body fluids. We compared the morphology and distribution of key proteins in the colon, cloaca, and urogenital ducts of watersnakes from marine (Nerodia clarkii clarkii) and freshwater (Nerodia fasciata) habitats. Specifically, we examined the epithelia of each tissue for evidence of mucus production by examining the distribution of mucopolysaccharides, and for evidence of water/ion regulation by examining the distribution of Na+/K+‐ATPase (NKA), Na+/K+/Cl? cotransporter (NKCC), and aquaporin 3 (AQP3). NKCC localized to the basolateral epithelium of the colon, urodeal sphincter, and proctodeum, consistent with a role in secretion of Na+, Cl?, and K+ from the tissue, but NKA was not detected in the colon or any compartment of the cloaca. Interestingly, NKA was detected in the basolateral epithelium of the ureters, suggesting the urothelium may play a role in active ion transport. AQP3 was detected in the ureters and coprodeal complex, consistent with a role in urinary and fecal dehydration or, potentially, in the production of the watery component of the mucus secreted by the coprodeal complex. Since no differences in general cloacal morphology, production of mucus, or the distribution of ion transporters/water channels were detected between the two species, cloacal osmoregulation may either be regulated by proteins not examined in this study or may not be responsible for the differential success of N. c. clarkii and N. fasciata in marine habitats. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
4.
5.
Summary Light-microscopic autoradiography was used to localize the cellular sites for neutral amino acid uptake in submandibular and sublingual salivary gland epithelia. The vasculature of isolated glands was perfused for 3–5 min with either L-(3-3H)serine or L-(4-3H)phenylalanine and then fixed by perfusion with buffered glutaraldehyde. In the submandibular gland the small neutral amino acid L-serine and the aromatic amino acid L-phenylalanine were localized to central acinar cells, demilunar cells and ductal cells. In the sublingual gland silver grains associated with each of these tritiated amino acids were localized to central acinar and ductal cells. Perfusion of both submandibular and sublingual glands with unlabelled L-serine (25 mM) or L-phenylalanine (30 mM) resulted in a significant decrease in the silver grain density associated with each labelled amino acid. The absence of silver grains in the lumina of acinar and ductal cells and the presence of tight junctions near the apical surface of the epithelium strongly suggest that the initial uptake of these amino acids was mediated by basolateral plasma membrane carriers.  相似文献   

6.
The Na-K-Cl cotransporter NKCC1 is activated by phosphorylation of a regulatory domain in its N terminus. In the accompanying paper (Darman, R. B., and Forbush, B. (2002) J. Biol. Chem. 277, 37542-37550), we identify three phosphothreonines important in this process. Using a phospho-specific antibody (anti-phospho-NKCC1 antibody R5) raised against a diphosphopeptide containing Thr(212) and Thr(217) of human NKCC, we were readily able to monitor the cotransporter activation state. In (32)P phosphorylation experiments with rectal gland tubules, we show that the R5 antibody signal is proportional to the amount of (32)P incorporated into NKCC1; and in experiments with NKCC1-transfected HEK-293 cells, we demonstrate that R5-detected phosphorylation directly mirrors functional activation. Immunofluorescence analysis of shark rectal gland shows activation-dependent R5 antibody staining along the basolateral membrane. In perfused rat parotid glands, isoproterenol induced staining of both acinar and ductal cells along the basolateral membrane. Isoproterenol also induced basolateral staining of the epithelial cells in rat trachea, whereas basal cells in the subepithelial tissue displayed heavy, non-polarized staining of the cell membrane. In rat colon, agonist stimulation induced staining along the basolateral membrane of crypt cells. These data provide direct evidence of NKCC1 regulation in these tissues, and they further link phosphorylation of NKCC1 with its activation in transfected cells and native tissue. The high conservation of the regulatory threonine residues among NKCC1, NKCC2, and NCC family members, together with the fact that tissues from divergent vertebrate species exhibit similar R5-binding profiles, lends further support to the role of this regulatory locus in vivo.  相似文献   

7.
Aquaporin-5 dependent fluid secretion in airway submucosal glands   总被引:28,自引:0,他引:28  
Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to play an important role in airway defense and surface liquid homeostasis and in the pathogenesis of cystic fibrosis. Immunocytochemistry revealed strong expression of aquaporin water channel AQP5 at the luminal membrane of serous epithelial cells in submucosal glands throughout the mouse nasopharynx and upper airways and AQP4 at the contralateral basolateral membrane in some glands. Novel methods were applied to measure secretion rates and composition of gland fluid in wild type mice and knockout mice lacking AQP4 or AQP5. In mice breathing through a tracheotomy, total gland fluid output was measured from the dilution of a volume marker present in the fluid-filled nasopharynx and upper trachea. Pilocarpine-stimulated fluid secretion was 4.3 +/- 0.4 microl/min in wild type mice, 4.9 +/- 0.9 microl/min in AQP4 null mice, and 1.9 +/- 0.3 microl/min in AQP5 null mice (p < 0.001). Similar results were obtained when secreted fluid was collected in the oil-filled nasopharyngeal cavity. Real-time video imaging of fluid droplets secreted from individual submucosal glands near the larynx in living mice showed a 57 +/- 4% reduced fluid secretion rate in AQP5 null mice. Analysis of secreted fluid showed a 2.3 +/- 0.2-fold increase in total protein in AQP5 null mice and a smaller increase in [Cl(-)], suggesting intact protein and salt secretion across a relatively water impermeable epithelial barrier. Submucosal gland morphology and density did not differ significantly in wild type versus AQP5 null mice. These results indicate that AQP5 facilitates fluid secretion in submucosal glands and that the luminal membrane of gland epithelial cells is the rate-limiting barrier to water movement. Modulation of gland AQP5 expression or function might provide a novel approach to treat hyperviscous gland secretions in cystic fibrosis and excessive fluid secretions in infectious or allergic bronchitis/rhinitis.  相似文献   

8.
Li Z  Zhao D  Gong B  Xu Y  Sun H  Yang B  Zhao X 《Radiation research》2006,165(6):678-687
The molecular mechanisms of radiation-induced xerostomia remain unclear. The purpose of this study was to investigate the alterations of aquaporins (AQPs) and Na(+)/K(+)-ATPase in irradiated rat submandibular glands and to test the hypothesis that down-regulation of AQP5 expression in irradiated salivary glands is one of the mechanisms of radiation-induced xerostomia. Saliva from control and irradiated rat submandibular glands was analyzed. The mRNA level of AQP5 in the submandibular glands was assessed by semi-quantitative RT-PCR and in situ hybridization. The protein expression of AQP5, AQP1 and Na(+)/K(+)-ATPase was determined by Western blotting and immunohistochemistry. The body weight, submandibular gland weight, and saliva secretion of irradiated rats significantly decreased by 12, 24 and 32% on day 3 and 24, 16 and 38% on day 30 postirradiation, respectively. There was a significant increase in the protein concentration and osmolality of saliva in irradiated rats on days 3 and 30 postirradiation. However, there was no significant difference between irradiated and control rats in total saliva protein secretion. RT-PCR analysis showed that mRNA expression of AQP5 was significantly down-regulated by 37 and 51% in irradiated rats on days 3 and 30 postirradiation, respectively. Immunoblotting showed that the AQP5 protein level was decreased by 40 and 60% in irradiated glands, in contrast to the slight reductions of AQP1 and Na(+)/K(+)-ATPase proteins. Immunohistochemical analysis demonstrated that loss of AQP5 protein occurred throughout the irradiated glands, while no significant reduction was detected in AQP1 and Na(+)/ K(+)-ATPase labeling density. These results suggest that the preferential down-regulation of AQP5 with minor effects on AQP1 and Na(+)/K(+)-ATPase may contribute to radiation-induced salivary dysfunction.  相似文献   

9.
This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type described in the renal cortex thick ascending limb (cTAL)) we have focused on the role of swelling-activated K+- and anion-conductive pathways in response to hypotonicity, and on the role of the apical (luminal) Na+-K+-2Cl- cotransporter (NKCC2) in the response to hypertonicity. The shrinkage-induced activation of NKCC2 involves an interaction between the cytoskeleton and protein phosphorylation events via PKC and myosin light chain kinase (MLCK). Killifish (Fundulus heteroclitus) opercular epithelium is a Cl(-)-secreting epithelium of the type described in exocrine glands, having a CFTR channel on the apical side and the Na+/K+ ATPase, NKCC1 and a K+ channel on the basolateral side. Osmotic control of Cl- secretion across the operculum epithelium includes: (i) hyperosmotic shrinkage activation of NKCC1 via PKC, MLCK, p38, OSR1 and SPAK; (ii) deactivation of NKCC by hypotonic cell swelling and a protein phosphatase, and (iii) a protein tyrosine kinase acting on the focal adhesion kinase (FAK) to set levels of NKCC activity.  相似文献   

10.
Electromyography and cinematography were used to determine the activity of epaxial muscles of colubrid snakes during terrestrial and aquatic lateral undulatory locomotion. In both types of lateral undulation, at a given longitudinal position, segments of three muscles (Mm. semispinalis-spinalis, longissimus dorsi, and iliocostalis) usually show synchronous activity. Muscle activity propagates posteriorly and generally is unilateral. With each muscle, large numbers of adjacent segments (30 to 100) show simultaneous activity. Terrestrial and aquatic undulation differ in two major respects. (1) During terrestrial undulation, muscle activity in a particular region begins when that portion of the body has reached maximal convex flexion and ends when it is maximally concave; this phase relation is uniform along the entire snake. During swimming, however, muscle activity passes posteriorly faster than the wave of vertebral flexion, causing the relation of muscle activity to flexion to change along the length of the snake. (2) In the terrestrial mode, the block of active muscle segments remains approximately constant in size as it passes down the snake, whereas during swimming the number of adjacent active muscle segments increases posteriorly. Despite the fact that Elaphe obsoleta has nearly twice as many body vertebrate as Nerodia fasciata (240 vs. 125), the only difference observed in the swimming of these two species is that a larger number of adjacent muscle segments is simultaneously active in comparable regions of Elaphe obsoleta than in Nerodia fasciata.  相似文献   

11.
Aquaporin-5 (AQP5) is a water channel protein and is considered to play an important role in water movement across the plasma membrane. We raised anti-AQP5 antibody and examined the localization of AQP5 protein in rat salivary and lacrimal glands by immunofluorescence microscopy. AQP5 was found in secretory acinar cells of submandibular, parotid, and sublingual glands, where it was restricted to apical membranes including intercellular secretory canaliculi. In the submandibular gland, abundant AQP5 was also found additionally at the apical membrane of intercalated duct cells. Upon stimulation by isoproterenol, apical staining for AQP5 in parotid acinar cells tended to appear as clusters of dots. These results suggest that AQP5 is one of the candidate molecules responsible for the water movement in the salivary glands.  相似文献   

12.
13.
1. Secretion from the mucous sublingual gland of the mouse has been investigated and compared with the serous parotid gland. The influence of acetylcholine, noradrenalin and adrenalin on the secretion of glycoproteins (e.g. mucins) and proteins (e.g. amylase) from these glands in vitro, and the involvement of cyclic AMP and Ca2+ has been studied. 2. Secretion from the parotid gland could be stimulated by both acetylcholine and the catecholamines. It appears that cyclic AMP plays an important role in the adrenergic secretory process, but not in the cholinergic-induced secretion. In the latter case, exogenous Ca2+ strongly increased the secretion. 3. Mucin secretion from the sublingual gland could be affected by acetylcholine in the presence of exogenous Ca2+. Noradrenalin and adrenalin induced only a slow mucin secretion and, for this secretory process, exogenous Ca2+ is also required. Though cyclic AMP is present in the sublingual gland, no influence on its level could be detected in this gland after stimulation of the adrenergic beta-receptor, whereas, in contrast to the parotid gland, dibutyryl cyclic AMP induced only a slow secretion. Because it was observed that the sublingual gland of the mouse is not innervated sympathetically, it seems reasonable to suppose that the catecholamines stimulate the mucin secretion from this gland via hormonal receptors and not via the adrenergic beta-receptor. 4. The protein secretion from the sublingual gland could be stimulated by both acetylcholine and the catecholamines. An involvement of cyclic AMP in this process was not observed. Addition of exogenous Ca2+ is less important, as was found for the mucin secretion. So it has been concluded that protein and mucin secretion from the sublingual gland are regulated via different pathways.  相似文献   

14.
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.  相似文献   

15.
Increasing evidence suggests that P2 receptors (P2Rs) in airway epithelial cells perform critical functions in auto- or paracrine regulation of fluid and mucus secretion. In the present study, we characterized the effects of P2R stimulation on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in normal human nasal epithelial (NHNE) cells. [Ca(2+)](i) and pH(i) were measured in primary cultures of NHNE cells using a double perfusion chamber, which enabled us to analyze membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to Na(+)-dependent and bumetanide-sensitive intracellular uptake of NH(4)(+). NKCC activities were observed in the basolateral membrane, but not in the luminal membrane, of NHNE cells. Interestingly, P2Rs were expressed in both membranes, and the stimulation of either luminal or basolateral P2R increased NKCC activity. Blockades of luminal Cl(-) channels, basolateral K(+) channels, or protein kinase C did not affect the activation of NKCC by basolateral P2R stimulation. The effects of luminal P2R stimulation were partially reduced by Cl(-) channel blockers. However, chelation of intracellular Ca(2+) by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) treatment completely blocked the stimulatory effects of luminal and basolateral P2Rs on NKCC. In addition, increasing [Ca(2+)](i) by treatment with ionomycin-stimulated NKCC activity. These results provide evidence that stimulation of P2Rs directly activates basolateral NKCC by Ca(2+)-dependent pathways in NHNE cells, which is an important aspect of the purinergic regulation of ion and fluid secretions in human airway epithelia under physiologic and pathologic conditions.  相似文献   

16.
Transepithelial Cl(-) secretion in polarized renal A6 cells is composed of two steps: (1) Cl(-) entry step across the basolateral membrane mediated by Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and (2) Cl(-) releasing step across the apical membrane via cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We estimated CFTR Cl(-) channel activity and transcellular Cl(-) secretion by measuring 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB, a blocker of CFTR Cl(-) channel)-sensitive transepithelial conductance (Gt) and short-circuit current (Isc), respectively. Pretreatment with 1 microM insulin for 24 h had no effects on NPPB-sensitive Gt or Isc. On the other hand, in A6 cells treated with carbobenzoxy-L-leucyl-leucyl-L-leucinal (MG132; 100 microM for 2 h) that inhibits endocytosis of proteins at the plasma membrane into the cytosolic space, insulin pretreatment increased the NPPB-sensitive Isc with no effects on NPPB-sensitive Gt. Genistein (100 microM) induced sustained increases in NPPB-sensitive Gt and Isc, which were diminished by brefeldin A (a blocker of protein translocation to Golgi apparatus from endoplasmic reticulum). Co-application of insulin and genistein synergically stimulated the NPPB-sensitive Isc without any effects on NPPB-sensitive Gt. These observations suggest that: (1) insertion and endocytosis of NKCC are stimulated by insulin, (2) the insulin-induced stimulation of NKCC insertion into the basolateral membrane is offset by the stimulatory action on NKCC endocytosis from the basolateral membrane, (3) genistein stimulates insertion of both CFTR Cl(-) channel into the apical membrane and NKCC into the basolateral membrane, and (4) insulin and genistein synergically stimulated NKCC insertion into the basolateral membrane.  相似文献   

17.
Five species of snakes in Florida, from Palm Beach County in the south and Alachua County 450 km to the north, occur in similar habitat but have distinctive Hepatozoon species characteristic of each host species. In Palm Beach County, Diadophis punctatus is host to Hepatozoon punctatus n. sp., Thamnophis sauritus sackenii to Hepatozoon sauritus n. sp., and Nerodia fasciata pictiventris to Hepatozoon pictiventris n. sp. In Alachua County, N. fasciata pictiventris is parasitized by Hepatozoon fasciatae n. sp., Seminatrix p. pygaea by Hepatozoon seminatrici n. sp., and Thamnophis s. sirtalis by Hepatozoon sirtalis n. sp. Each Hepatozoon sp. has distinctive gamonts and sporogonic characters and, in the 4 species where known, meronts. Nerodia floridana is host to Haemogregarina floridana n. sp. in both localities, with generic identification tentative, based upon presence of erythrocytic meronts. The presence of sporocysts in the proboscis of 31% of Aedes aegypti infected by H. pictiventris is the first report of infective stages of a reptilian Hepatozoon species within the mouthparts of a dipteran vector. This study suggests that in Florida, at least, the diversity of the Hepatozoon community not only equals but probably exceeds the diversity of the snake communities present, and that host specificity in nature may be much greater than that postulated from previous studies.  相似文献   

18.
In the branchial mitochondrion-rich (MR) cells of euryhaline teleosts, the Na+/K+/2Cl cotransporter (NKCC) is an important membrane protein that maintains the internal Cl concentration, and the branchial Na+/K+-ATPase (NKA) is crucial for providing the driving force for many other ion-transporting systems. Hence this study used the sailfin molly (Poecilia latipinna), an introduced aquarium fish in Taiwan, to reveal that the potential roles of NKCC and NKA in sailfin molly were correlated to fish survival rates upon salinity challenge. Higher levels of branchial NKCC were found in seawater (SW)-acclimated sailfin molly compared to freshwater (FW)-acclimated individuals. Transfer of the sailfin molly from SW to FW revealed that the expression of the NKCC and NKA proteins in the gills was retained over 7 days in order to maintain hypoosmoregulatory endurance. Meanwhile, their survival rates after transfer to SW varied with the duration of FW-exposure and decreased significantly when the SW-acclimated individuals were acclimated to FW for 21 days. Double immunofluorescence staining showed that in SW-acclimated sailfin molly, NKCC signals were expressed on the basolateral membrane of MR cells, whereas in FW-acclimated molly, they were expressed on the apical membrane. This study illustrated the correlation between the gradual reductions in expression of branchial NKCC and NKA (i.e., the hypoosmoregulatory endurance) and decreasing survival rates after hyperosmotic challenge in sailfin molly.  相似文献   

19.
20.
The molecular pathways for fluid transport in pulmonary, oral,and nasal tissues are still unresolved. Here we use immunocytochemistry and immunoelectron microscopy to define the sites of expression of fouraquaporins in the respiratory tract and glandular epithelia, where theyreside in distinct, nonoverlapping sites. Aquaporin-1 (AQP1) is presentin apical and basolateral membranes of bronchial, tracheal, andnasopharyngeal vascular endothelium and fibroblasts. AQP5 is localizedto the apical plasma membrane of type I pneumocytes and the apicalplasma membranes of secretory epithelium in upper airway and salivaryglands. In contrast, AQP3 is present in basal cells of tracheal andnasopharyngeal epithelium and is abundant in basolateral membranes ofsurface epithelial cells of nasal conchus. AQP4 resides in basolateralmembranes of columnar cells of bronchial, tracheal, and nasopharyngealepithelium; in nasal conchus AQP4 is restricted to basolateralmembranes of a subset of intra- and subepithelial glands. These sitesof expression suggest that transalveolar water movement, modulation ofairway surface liquid, air humidification, and generation ofnasopharyngeal secretions involve a coordinated network of aquaporinwater channels.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号