首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
甘蓝型油菜花瓣缺失基因的图谱定位   总被引:4,自引:1,他引:3  
在无花瓣品系APT02和正常有花瓣品种中双4号构建的的F2分离群体中,运用AFLP和SRAP两种标记技术对甘蓝型油菜花瓣缺失基因进行分子标记和图谱定位。在两亲本间筛选20对AFLP引物和170对SRAP 引物,进一步通过BSA法筛选,获得了与甘蓝型油菜花瓣缺失基因WHB连锁的1个SRAP标记e8m3_4(600bp)和1个AFLP标记E3247_15(150bp),标记与基因WHB之间的遗传距离分别为5 cM和13.5cM;构建了一个甘蓝型油菜(Brassica napus.L )的分子标记遗传连锁图谱,该图谱共包含213个AFLP标记、56个SRAP标记和1个形态标记,分布于17个主要连锁群、两个三联体和4个连锁对中,遗传图距总长2487.1cM,标记间平均距离为10.09 cM。通过图谱定位,控制花瓣缺失性状的基因WHB被定位到第4连锁群(LG4)上。  相似文献   

2.
甘蓝型黄籽油菜种皮色泽QTL作图   总被引:8,自引:0,他引:8  
甘蓝型黄籽油菜具有低纤维、高蛋白及高含油量的优点,因而己成为广大油菜育种工作者研究的重点之一。利用甘蓝型黑籽品系油研2号作父本,计蓝型黄籽品系GH06为母本,获得132个单株的F2群体;以AFLP和SSR为主要分析方法,构建了包括164个标记的甘蓝型油菜遗传连锁图谱,其中包括125个AFLP标记、37个SSR标记及一个RAPD和一个SCAR标记,分布在19个连锁群上,覆盖油菜基因组2549.8cM,标记间平均距离15.55cM。利用多区间作图法,对种皮色泽QTL进行分析,在第5及第19连锁群上各检测到一个QTL位点,分别解释表型变异46%及30.9%。  相似文献   

3.
以杏扁品种‘龙王帽’授粉‘优一’获得98个F1代单株为作图群体,采用SRAP和SSR标记进行连锁图谱的构建。采用Join Map 4.0软件进行连锁分析,分别构建了‘龙王帽’和‘优一’的分子连锁框架图,共获得132个SRAP标记和17个SSR标记。其中父本遗传图谱涉及8个连锁群,包含53个SRAP标记和9个SSR标记,图谱总长为694.8 cM,标记间平均图距为11.21 cM,平均每个连锁群上有7.75个标记位点,连锁群平均长度为86.85 cM;母本遗传图谱涉及8个连锁群,包含79个SRAP标记和8个SSR标记,图谱总长为924.8 cM,标记间平均图距为10.63 cM,平均每个连锁群上有10.87个标记位点,连锁群平均长度为115.6 cM。  相似文献   

4.
大豆遗传图谱的构建和分析   总被引:47,自引:2,他引:45  
利用大豆栽培品种科丰1号和南农1138-2杂交得到的重组近交系NJRIKY,通过RFLP,SSR,RAPD和AFLP4种分子标记的遗传连锁分析,构建了包含24个连锁群,由792个遗传标记组成的大豆较高密度连锁图谱,该图谱覆盖2320.7cM,平均图距2.9cM,SSR标记的多态性较高,在基因组中的位置相对稳定,可以作为锚定标记,有利于连锁群的归并和不同图谱的比较整合;而AFLP标记对于增加图谱密度效率较高,但其容易出现聚集现象,从而造成连锁群上有很大的空隙(gap),另外,在连锁群中有21.7%的分子标记出现偏分离,该图谱为基因定位,比较基因组学和重要农艺性状的QTL定位等研究打下了基础。  相似文献   

5.
王峰  官春云 《遗传》2010,32(3):271-277
采用常规品系04-1139与高产多角果品系05-1054构建的F2代群体为作图群体,运用SSR(Simple sequence repeat)和SRAP(Sequence-related amplified polymorphism)构建分子标记遗传图谱并对甘蓝型油菜单株产量构成因素进行QTL分析。遗传图谱包含200个分子标记,分布于19个连锁群上,总长度1700.23cM,标记间的平均距离8.50cM。采用复合区间作图法(Composite interval mapping,CIM)对单株产量构成因素(单株有效角果数、每果粒数和千粒重)进行QTL分析,共检测到12个QTL:其中单株有效角果数4个QTL,分别解释表型变异为35.64%、12.96%、28.71%和34.02%;每果粒数获得5个QTL,分别解释表型变异为8.41%、7.87%、24.37%、8.57%和14.31%;千粒重获得3个QTL,分别解释表型变异为2.33%、1.81%和1.86%。结果表明:同一性状的等位基因增效作用可以同时来自高值亲本和低值亲本;文章中与主效QTL连锁的标记可用于油菜产量性状的分子标记辅助选择和聚合育种。  相似文献   

6.
对海岛棉产量和早熟性状进行QTL初步定位,为分子标记辅助育种提供依据.利用5200多对SSR引物筛选海岛棉品种新海3号和Giza82间的多态性引物,获得107对.以多态性引物检测新海3号×Giza82的190个F2∶3家系,获得120个多态性位点.利用JoinMap3.0分析软件构建了一个包含22个连锁群,74个标记,标记间平均距离12.06cM,全长893cM,覆盖海岛棉基因组20.12%的分子标记遗传连锁图谱.采用复合区间作图法检测到21个与海岛棉产量性状和早熟性状有关的QTL,其中早熟性状检测到12个QTL,分别位于1、3、5、6、11、17、22共7个连锁群上;产量性状检测到9个QTL,分别位于1、4、5、6、7、16、22共7个连锁群上.研究结果为海岛棉产量性状和早熟性状的分子设计育种提供了有用的信息.  相似文献   

7.
梨分子遗传图谱构建及生长性状的QTL分析   总被引:11,自引:1,他引:10  
利用鸭梨和京白梨杂交得到的F1(145株)实生苗为作图群体,通过对AFLP和SSR两种分子标记的遗传连锁分析,应用Joinmap 3.0作图软件,368个AFLP标记、34个SSR标记构建了分属18个连锁群的梨分子遗传连锁图谱,各连锁群的LOD值在4.0~7.0范围之间,图谱总长度覆盖梨基因组1395.9cM,平均图距为3.8cM.采用区间作图法,对该群体与生长性状相关的调查数据进行QTL分析,检测到与新梢生长量、新梢茎粗、节间长度、节间数量、树干径、树高及皮孔密度7个农艺性状连锁的QTL位点35个,其中主效QTL位点11个(LOD≥3.5).与生长性状相关的农艺性状QTL位点多集中在LG16连锁群上.  相似文献   

8.
构建高密度遗传连锁图谱是冰草抗性、品质、产量等重要性状QTL精细定位及标记辅助育种研究的基础。该试验以四倍体杂交冰草F2群体的202个分离单株及其亲本为材料,利用SRAP分子标记技术和Join Map 4.0作图软件对冰草的遗传连锁图谱进行了构建。结果表明:(1)共筛选出22对多态性好、标记位点清晰稳定的SRAP适宜引物,对冰草杂种F2分离单株的基因组DNA进行PCR扩增,共获得510个SRAP多态性标记位点,其比率占88.2%。(2)偏分离分析表明,偏分离标记比率仅为14.12%,符合遗传作图的要求。(3)成功构建了冰草的SRAP分子标记遗传连锁图谱,该图谱有14个连锁群、510个标记,连锁群间长度范围86.4~179.0cM,覆盖基因组总长度1 912.9cM,标记间平均间距3.75cM,为高密度遗传图谱。  相似文献   

9.
以“元莜麦”和“555”杂交得到的281个F2单株为作图群体,利用20对AFLP引物、3对SSR引物和1个穗型性状构建了一张大粒裸燕麦遗传连锁图。该图谱全长1544.8cM,包含19个连锁群,其上分布有92个AFLP标记、3个SSR标记和1个穗型形态标记,不同连锁群标记数为2-14个,长度在23.7-276.3cM之间,平均长度为81.3cM,标记间平均距离为20.1cM。穗型标记分离比符合3:1,11个AFLP标记表现为偏分离,偏分离比为11.5%。该图谱符合遗传连锁框架图的要求,为今后大粒裸燕麦的QTL定位、分子标记辅助育种和比较基因组学等研究奠定基础。  相似文献   

10.
麦红吸浆虫是影响小麦产量和品质的重要害虫,研究小麦对吸浆虫抗性的遗传及其连锁分子标记对于提高抗虫品种的选择效率具有重要意义。本研究以小麦感虫品系6218与抗虫品种冀麦24产生的重组近交系(RIL)群体为材料,利用SSR标记和人工虫圃对冀麦24的抗虫性遗传进行了研究。结果表明:6218与冀麦24的抗性差异显著,RIL群体在2年2点的鉴定中抗性稳定;所构建的遗传连锁图谱包含112个SSR位点,形成26个连锁群,图谱全长835.7 cM,标记间平均距离为7.5 cM。利用QTL IciMapping的完备区间作图法,在4A染色体上检测到1个加性效应位点(QSm.hbau-4A),该位点在2个鉴定年度的贡献率分别为9.67%、10.57%。该抗性QTL及其连锁SSR标记的发掘,将有助于提高小麦抗吸浆虫育种的选择效率。  相似文献   

11.
The yellow seed coat trait in No. 2127-17, a resynthesized purely yellow Brassica napus line, is controlled by a single partially dominant gene, Y. A double-haploid population derived from the F1 of No. 2127-17 x 'ZY821' was used to map the seed coat color phenotype. A combination of AFLP analysis and bulked segregant analysis identified 18 AFLP markers linked to the seed coat color trait. The 18 AFLP markers were mapped to a chromosomal region of 37.0 cM with an average of 2.0 cM between adjacent markers. Two markers, AFLP-K and AFLP-H, bracketed the Y locus in an interval of 1.0 cM, such that each was 0.5 cM away from the Y locus. Two other markers, AFLP-A and AFLP-B, co-segregated with the seed color gene. For ease of use in breeding programs, these 4 most tightly linked AFLP markers were converted into reliable PCR-based markers. SCAR-K, which was derived from AFLP-K, was assigned to linkage group 9 (N9) of a B. napus reference map consisting of 150 commonly used SSR (simple sequence repeat) markers. Furthermore, 2 SSR markers (Na14-E08 and Na10-B07) linked to SCAR-K on the reference map were reversely mapped to the linkage map constructed in this study, and also showed linkage to the Y locus. These linked markers would be useful for the transfer of the dominant allele Y from No. 2127-17 to elite cultivars using a marker-assisted selection strategy and would accelerate the cloning of the seed coat color gene.  相似文献   

12.
We constructed a high-density Brassica rapa integrated linkage map by combining a reference genetic map of 78 doubled haploid lines derived from Chiifu-401-42?× Kenshin (CKDH) and a new map of 190 F2 lines derived from Chiifu-401-42?× rapid cycling B. rapa (CRF2). The integrated map contains 1017 markers and covers 1262.0 cM of the B. rapa genome, with an average interlocus distance of 1.24 cM. High similarity of marker order and position was observed among the linkage groups of the maps with few short-distance inversions. In total, 155 simple sequence repeat (SSR) markers, anchored to 102 new bacterial artificial chromosomes (BACs) and 146 intron polymorphic (IP) markers were mapped in the integrated map, which would be helpful to align the sequenced BACs in the ongoing multinational Brassica rapa Genome Sequencing Project (BrGSP). Further, comparison of the B. rapa consensus map with the 10 B. juncea A-genome linkage groups by using 98 common IP markers showed high-degree colinearity between the A-genome linkage groups, except for few markers showing inversion or translocation. Suggesting that chromosomes are highly conserved between these Brassica species, although they evolved independently after divergence. The sequence information coming out of BrGSP would be useful for B. juncea breeding. and the identified Arabidopsis chromosomal blocks and known quantitative trait loci (QTL) information of B. juncea could be applied to improve other Brassica crops including B. rapa.  相似文献   

13.
Yellow seed is one of the most important traits of Brassica napus L. Efficient selection of the yellow-seed trait is one of the most important objectives in oilseed rape breeding. Two recombinant inbred line (RIL) populations (RIL-1 and RIL-2) were analyzed for 2 years at 2 locations. Four hundred and twenty SSR, RAPD, and SRAP marker loci covering 1744 cM were mapped in 26 linkage groups of RIL-1, while 265 loci covering 1135 cM were mapped in 20 linkage groups of RIL-2. A total of 19 QTLs were detected in the 2 populations. A major QTL was detected adjacent to the same marker (EM11ME20/200) in both maps in both years. This major QTL could explain 53.71%, 39.34%, 42.42%, 30.18%, 24.86%, and 15.08% of phenotypic variation in 6 combinations (location x year x population). BLASTn analysis of the sequences of the markers flanking the major QTL revealed that the homologous region corresponding to this major QTL was anchored between genes At5g44440 and At5g49640 of Arabidopsis thaliana chromosome 5 (At C5). Based on comparative genomic analysis, the bifunctional gene TT10 is nearest to the homologue of EM11ME20/200 on At C5 and can be considered an important candidate gene for the major QTL identified here. Besides providing an effective strategy for marker-assisted selection of the yellow-seed trait in B. napus, our results also provide important clues for cloning of the candidate gene corresponding to this major QTL.  相似文献   

14.
A Gehringer  W Friedt  W Lühs  R J Snowdon 《Génome》2006,49(12):1555-1563
The crucifer oilseed plant false flax (Camelina sativa subsp. sativa) possesses numerous valuable agronomic attributes that make it attractive as an alternative spring-sown crop for tight crop rotations. The oil of false flax is particularly rich in polyunsaturated C18-fatty acids, making it a valuable renewable feedstock for the oleochemical industry. Because of the minimal interest in the crop throughout the 20th century, breeding efforts have been limited. In this study, a genetic map for C. sativa was constructed, using amplified fragment length polymorphism (AFLP) markers, in a population of recombinant inbred lines that were developed, through single-seed descent, from a cross between 'Lindo' and 'Licalla', 2 phenotypically distinct parental varieties. Three Brassica simple sequence repeat (SSR) markers were also integrated into the map, and 1 of these shows linkage to oil-content loci in both C. sativa and Brassica napus. Fifty-five other SSR primer combinations showed monomorphic amplification products, indicating partial genome homoeology with the Brassica species. Using data from field trials with different fertilization treatments (0 and 80 kg N/ha) at multiple locations over 3 years, the map was used to localize quantitative trait loci (QTLs) for seed yield, oil content, 1000-seed mass, and plant height. Some yield QTLs were found only with the N0 treatment, and might represent loci contributing to the competitiveness of false flax in low-nutrient soils. The results represent a starting point for future marker-assisted breeding.  相似文献   

15.
A linkage map of garden pea was constructed on the basis of 114 plants (F2 generation) derived from a cross combination Wt10245 x Wt11238. The map, consisting of 204 morphological, isozyme, AFLP, ISSR, STS, CAPS and RAPD markers, was used for interval mapping of quantitative trait loci (QTLs) controlling seed number, pod number, 1000-seed weight, 1000-yield, and seed protein content. Characterization of each QTL included identification of QTL position with reference to the flanking markers, estimation of the part of variance explained by this QTL, and determination of its gene action. The yield-related traits were measured in F2 plants and in F4 recombinant inbred lines (RILs). The interval mapping revealed two to six QTLs per trait, demonstrating linkage to seven pea chromosomes. A total of 37 detected QTLs accounted for 9.1-55.9% of the trait's phenotypic variation and showed different types of gene action. As many as eight and ten QTLs influencing the analysed traits were mapped in linkage groups III and V, respectively, indicating an important role of these regions of the pea genome in the control of yield and seed protein content.  相似文献   

16.
Huang Z  Ban Y  Yang L  Zhang Y  Li H  Xiao E  Xu A  Zhang D 《Génome》2012,55(1):8-14
The yellow mustard plant in Northern Shaanxi is a precious germplasm, and the yellow seed trait is controlled by a single recessive gene. In this report, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) techniques were used to identify markers linked to the brown seed locus in an F(2) population consisting of 1258 plants. After screening 256 AFLP primer combinations and 456 pairs of SSR primers, we found 14 AFLP and 2 SSR markers that were closely linked to the brown seed locus. Among these markers, the SSR marker CB1022 showed codominant inheritance. By integrating markers previously found to be linked to the brown seed locus into the genetic map of the F(2) population, 23 markers were linked to the brown seed locus. The two closest markers, EA02MC08 and P03MC08, were located on either side of the brown seed locus at a distance of 0.3 and 0.5 cM, respectively. To use the markers for the breeding of yellow-seeded mustard plants, two AFLP markers (EA06MC11 and EA08MC13) were converted into sequence-characterized amplified region (SCAR) markers, SC1 and SC2, with the latter as the codominant marker. The two SSR markers were subsequently mapped to the A9/N9 linkage group of Brassica napus L. by comparing common SSR markers with the published genetic map of B. napus. A BLAST analysis indicated that the sequences of seven markers showed good colinearity with those of Arabidopsis chromosome 3 and that the homolog of the brown seed locus might exist between At3g14120 and At3g29615 on this same chromosome. To develop closer markers, we could make use of the sequence information of this region to design primers for future studies. Regardless, the close markers obtained in the present study will lay a solid foundation for cloning the yellow seed gene using a map-based cloning strategy.  相似文献   

17.
Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号