首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
ABSTRACT. Techniques for investigating pheromones responsible for clustering in Apis mellifera are described. Stable queenless clusters were formed in response to synthetic Nasonov pheromone mixed with (E)-9-oxo-2-decenoic acid. This mixture plus the addition of (E)-9-hydroxy-2-decenoic acid was less potent in initiating cluster formation than it was without this addition, but the clusters once formed sometimes grew larger. Other unknown components from the queen's mandibular glands encouraged cluster formation.  相似文献   

2.
In the honey bee colony queen rearing is usually suppressed by releaser effects of the queen's pheromone. This is part of the dominance hierarchy maintaining the monogynous homeostasis. Under queenless conditions, the queen's control over the construction of emergency queen cells by the workers can be substitued by exposure to only one component of the mandibular pheromone secretion of a queen, the main compound (E)-9-oxo-2-decenoic acid. A novel and simple synthesis of (E)-9-oxo-2-decenoic acid is described, and a bioassay was developed by which a dose-dependent effect of synthetic (E)-9-oxo-2-decenoic acid presented on a dummy bee was evaluated.Abbreviation 9-ODA (E)-9-oxo-2-decenoic acid In memoriam Viktor Schwartz (1907–1992), Professor of Zoology and Developmental Biology, University of Tübingen, who introduced smoothened bee stings into microsurgery  相似文献   

3.
Chemical signals influence the selection of potential nest cavities by honey bee reproductive swarms. Attractants for swarms include the odors of old dark honey bee brood combs, odors from noncomb hive materials and propolis, and Nasonov pheromone, the odor released from the Nasonov glands of worker bees. Based on crossover and choice test experiments, swarms were shown to prefer, among otherwise identical cavities, those cavities containing Nasonov pheromone over cavities with only comb or other hive odors, cavities containing old comb over those with only noncomb odors or propolis, and cavities containing noncomb odors or propolis over those without bee or hive odor. Synergy between odors was not observed; that is, comb and/or noncomb hive odors did not enhance the attractiveness of Nasonov pheromone. The data support a model based on a hierarchy of olfactory attractants used by honey bee swarms, in order of highest to lowest: Nasonov pheromone, comb odor, noncomb and propolis odors, and, finally, absence of bee- or hive-produced odor.  相似文献   

4.
In honeybee (Apis mellifera) societies, the queen controls the development and the caste status of the members of the hive. Queen bees secrete pheromonal blends comprising 10 or more major and minor components, mainly hydrophobic. The major component, 9-keto-2(E)-decenoic acid (9-ODA), acts on the workers and male bees (drones), eliciting social or sexual responses. 9-ODA is captured in the antennal lymph and transported to the pheromone receptor(s) in the sensory neuron membranes by pheromone binding proteins (PBPs). A key issue is to understand how the pheromone, once tightly bound to its PBP, is released to activate the receptor. We report here on the structure at physiological pH of the main antennal PBP, ASP1, identified in workers and male honeybees, in its apo or complexed form, particularly with the main component of the queen mandibular pheromonal mixture (9-ODA). Contrary to the ASP1 structure at low pH, the ASP1 structure at pH 7.0 is a domain-swapped dimer with one or two ligands per monomer. This dimerization is disrupted by a unique residue mutation since Asp35 Asn and Asp35 Ala mutants remain monomeric at pH 7.0, as does native ASP1 at pH 4.0. Asp35 is conserved in only ∼ 30% of medium-chain PBPs and is replaced by other residues, such as Asn, Ala and Ser, among others, thus excluding that they may perform domain swapping. Therefore, these different medium-chain PBPs, as well as PBPs from moths, very likely exhibit different mechanisms of ligand release or receptor recognition.  相似文献   

5.
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) mediate both perception and release of chemical stimuli in insects. The genome of the honey bee contains 21 genes encoding OBPs and 6 encoding CSPs. Using a proteomic approach, we have investigated the expression of OBPs and CSPs in the mandibular glands of adult honey bees in relation to caste and age. OBP13 is mostly expressed in young individuals and in virgin queens, while OBP21 is abundant in older bees and is prevalent in mated queens. OBP14, which had been found in larvae, is produced in hive workers' glands. Quite unexpectedly, the mandibular glands of drones also contain OBPs, mainly OBP18 and OBP21. We have expressed three of the most represented OBPs and studied their binding properties. OBP13 binds with good specificity oleic acid and some structurally related compounds, OBP14 is better tuned to monoterpenoid structures, while OBP21 binds the main components of queen mandibular pheromone as well as farnesol, a compound used as a trail pheromone in the honey bee and other hymenopterans. The high expression of different OBPs in the mandibular glands suggests that such proteins could be involved in solubilization and release of semiochemicals.  相似文献   

6.
Queen substances from the abdomen of the honey bee queen   总被引:1,自引:0,他引:1  
Summary The secretion of the mandibular glands of a honey bee queen enables the worker bees to react to the presence of their queen. Extirpating the mandibular glands of the queen does not prevent that she is accepted by her colony. Hitherto this was attributed to contamination of the queen's body by mandibular gland substances during or preceding the extirpation. When, however, these glands are extirpated before they have secreted any material and the queens are inseminated artificially, the colonies still accept these queens. A normal-sized retinue, the absence of emergency cell building and the absence of activation of the worker's ovaries indicate that such a queen is still able to maintain her social position. This supports Verheijen-Voogd's (1959) conclusion that the queen's influence on her workers has a behavioural basis (chemoreception) rather than a biochemical one.Laboratory experiments reveal that apart from the mandibular gland substances other queen pheromones are produced in glands on the abdomen, most probably in the glands described by Renner and Baumann (1964).  相似文献   

7.
Juvenile hormone synthesis in adult worker honey bees was measured by an in vitro corpora allata bioassay. Adult queenless workers exhibit higher rates of juvenile hormone biosynthesis than queenright workers. Hormone synthesis is not correlated with the volume of the glands. Extract of queen mandibular glands, applied to a dummy, reduces juvenile hormone biosynthesis in caged queenless workers to the level of queenright workers. The same result was obtained with synthetic (E)-9-oxo-2-decenoic acid, the principal component of the queen mandibular gland secretion. This pheromonal primer effect may function as a key regulating element in maintaining eusocial colony homeostasis. The presence of brood does not affect the hormone production of the corpora allata.Abbreviations BSA bovine serum albumin - CA Corpora allata - JH juvenile hormone - 9-ODA (E)-9-oxo-2-decnoic acid  相似文献   

8.
Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval.  相似文献   

9.
The managed honeybee, Apis mellifera, has been experienced a puzzling event, termed as colony collapse disorder (CCD), in which worker bees abruptly disappear from their hives. Potential factors include parasites, pesticides, malnutrition, and environmental stresses. However, so far, no definitive relationship has been established between specific causal factors and CCD events. Here we theoretically test whether atmospheric environment could disturb the chemical communication between the queen and their workers in a colony. A quantum chemistry method has been used to investigate for the stability of the component of A. mellifera queen mandibular pheromone (QMP), (E)-9-keto-2-decenoic acid (9-ODA), against atmospheric water and free radicals. The results show that 9-ODA is less likely to react with water due to the high barrier heights (~36.5 kcal?·?mol?1) and very low reaction rates. However, it can easily react with triplet oxygen and hydroxyl radicals because of low or negative energy barriers. Thus, the atmospheric free radicals may disturb the chemical communication between the queen and their daughters in a colony. Our pilot study provides new insight for the cause of CCD, which has been reported throughout the world.  相似文献   

10.
Studies of Varroa destructor orientation to honey bees were undertaken to isolate discrete chemical compounds that elicit host-finding activity. Petri dish bioassays were used to study cues that evoked invasion behaviour into simulated brood cells and a Y-tube olfactometer was used to evaluate varroa orientation to olfactory volatiles. In Petri dish bioassays, mites were highly attracted to live L5 worker larvae and to live and freshly freeze-killed nurse bees. Olfactometer bioassays indicated olfactory orientation to the same type of hosts, however mites were not attracted to the odour produced by live pollen foragers. The odour of forager hexane extracts also interfered with the ability of mites to localize and infest a restrained nurse bee host. Varroa mites oriented to the odour produced by newly emerged bees (<16 h old) when choosing against a clean airstream, however in choices between the odours of newly emerged workers and nurses, mites readily oriented to nurses when newly emerged workers were <3 h old. The odour produced by newly emerged workers 18–20 h of age was equally as attractive to mites as that of nurse bees, suggesting a changing profile of volatiles is produced as newly emerged workers age. Through fractionation and isolation of active components of nurse bee-derived solvent washes, two honey bee Nasonov pheromone components, geraniol and nerolic acid, were shown to confuse mite orientation. We suggest that V. destructor may detect relative concentrations of these compounds in order to discriminate between adult bee hosts, and preferentially parasitize nurse bees over older workers in honey bee colonies. The volatile profile of newly emerged worker bees also may serve as an initial stimulus for mites to disperse before being guided by allomonal cues produced by older workers to locate nurses. Fatty acid esters, previously identified as putative kairomones for varroa, proved to be inactive in both types of bioassays.  相似文献   

11.
Nestmate recognition is the basic mechanism for rejecting foreign individuals and is essential for maintaining colony integrity in insect societies. However, in honeybees, Apis mellifera, both workers and males occasionally gain access to foreign colonies in spite of nest guards (=drifting). Instead of conducting direct behavioural observations, we inferred nestmate recognition for males and workers from the genotypes of naturally drifting individuals in honeybee colonies. We evaluated the degree of polyandry of the resident queens, because nestmate recognition theory predicts that the genotypic composition of insect colonies may affect the recognition precision of guards. Workers (N=1346) and drones (N=407) from 38 colonies were genotyped using four DNA microsatellite loci. Foreign bees were identified by maternity testing. The proportion of foreign individuals in a host colony was defined as immigration. Putative mother queens were identified if a queen's genotype corresponded with the genotype of a drifted individual. The proportion of a colony's individuals in the total number of drifted individuals was defined as emigration. Drones immigrated significantly more frequently than workers. The impact of polyandry was significantly different between drones and workers. Whereas drones immigrated more readily into less polyandrous colonies, worker immigration was not correlated with the degree of polyandry of the host colony. Furthermore, colonies with high levels of emigrated drones did not show high levels of emigration for workers, and colonies that adopted many workers did not adopt many foreign drones. Our data indicate that genetically derived odour cues are important for honeybee nestmate recognition in drones and show that different nestmate recognition mechanisms are used to identify drones and workers.  相似文献   

12.
蜜蜂上颚腺及其分泌物研究进展   总被引:1,自引:0,他引:1  
上颚腺是蜜蜂重要的外分泌腺体,其分泌物是维系蜂群社会性结构的重要物质。蜂王和工蜂上颚腺分泌物合成均以硬脂酸为合成前体,但在脂肪酸的β-氧化过程中表现出级型差异性,导致分泌物组分比例不同。蜂王上颚腺分泌物以9-羰基-2癸烯酸(9-ODA)为主,有吸引工蜂和雄蜂、抑制工蜂卵巢发育等作用;工蜂上颚腺分泌物以10-羟基-2癸烯酸(10-HDA)和10-羟基癸酸(10-HDAA)为主,是蜂王浆的重要组成部分。同时,这种具备典型级型差异的分泌物组成又具有级型间可塑性,在不同蜂种间也存在区别。近年来在转录水平和蛋白水平的一些研究进一步揭示了级型间差异的分子基础。针对蜜蜂上颚腺及其分泌物的研究在蜜蜂生物学、行为学和蜂产品质量控制等方面具有重要的意义。本文通过总结国内外相关研究进展,旨在为上颚腺分泌物的作用机制、生物合成机制等领域的进一步深入研究提供借鉴。  相似文献   

13.
The mode of intranest transfer of the honey bee queen mandibular gland pheromone complex (QMP) was investigated in unpopulous and populous, slightly congested colonies, using synthetic QMP containing tritiated 9-keto-2(E)-decenoic acid, one of the QMP components. Radiolabel was rapidly transported from the center to the peripheral regions of the nest, and in a manner consistent with worker to worker transport. Population size and congestion had no effect on the relative rates of movement from the center to the periphery of the nest or on the mean amounts of radiolabel on individual bees. However, a significantly smaller proportion of the workers in the populous colonies received detectable amounts of radiolabel than in the uncongested colonies, and workers carrying especially large amounts of radiolabel were less numerous in the crowded colonies. It is suggested that, at the stage of colony development that the colonies were in, population size has more of an effect on intranest pheromone transmission than does crowding. Interference with pheromone transfer may occur only at higher levels of congestion than were created, and nearer to the reproductive phase of colony development. An alternative hypothesis is that colony crowding does not significantly affect QMP transport and that the onset of reproductive queen rearing may be associated more with changes in worker thresholds of response to QMP.  相似文献   

14.
ABSTRACT. The observations provided strong circumstantial evidence that workers in a queen's court obtain queen pheromone on their antennae, and that queen pheromone is distributed through the colony during antennal contact between workers. Workers that had just left the court of a mated or virgin queen had an increased tendency to make reciprocated antennal contacts with other workers. This tendency was reinforced when the workers concerned licked the queen in addition to palpating her with their antennae, probably because they spent longer in the court. The first workers contacted by those leaving the court also had an increased tendency to make reciprocated antennal contacts. Antennal contacts were more likely to be initiated by bees other than those from the queen's court. Workers from the court and those they first contacted, participated in food transfer more than did workers selected at random. Workers that licked a virgin queen subsequently participated in food transfer more than those that palpated her with their antennae only. Within about 5 min of leaving the court, a worker's participation in reciprocated antennal contacts and in food transfer diminished to the level of non-court workers. Workers chosen at random made more transient and non-reciprocated antennal contacts when in a colony with a mated queen than when in a colony with a virgin queen.  相似文献   

15.
Summary Queen rearing is suppressed in honey bees (Apis mellifera L.) by pheromones, particularly the queen's mandibular gland pheromone. In this study we compared this pheromonally-based inhibition between temperate and tropically-evolved honey bees. Colonies of European and Africanized bees were exposed to synthetic queen mandibular gland pheromone (QMP) for ten days following removal of resident queens, and their queen rearing responses were examined. Queen rearing was suppressed similarly in both European and Africanized honey bees with the addition of synthetic QMP, indicating that QMP acts on workers of both races in a comparable fashion. QMP completely suppressed queen cell production for two days, but by day six, cells containing queen larvae were present in all treated colonies, indicating that other signals play a role in the suppression of queen rearing. In queenless control colonies not treated with QMP, Africanized bees reared 30% fewer queens than Europeans, possibly due to racial differences in response to feedback from developing queens and/or their cells. Queen development rate was faster in Africanized colonies, or they selected older larvae to initiate cells, as only 1 % of queen cells were unsealed after 10 days compared with 12% unsealed cells in European colonies.  相似文献   

16.
Summary. When arriving at a known artificial food source, foraging honeybees usually perform circular flights around the feeding place prior to landing. During these flights bees expose their Nasonov gland, an exocrine gland located at the base of the 7th tergum, that releases a complex blend of volatiles. This behavior may continue even after the bee starts food ingestion. The proportion of bees exposing the Nasonov gland and the duration of its exposure before and during feeding for individual bees were quantified. Trained bees collected sugar solution during 12 visits from a feeder located at 160 m from the hive. Five different reward programs were presented: three constant and two variable. The constant programs offered 0.6, 1.2 or 2.4 M sugar for all 12 visits, while the variable programs delivered either 0.6, 1.2, 0.6 M or 0.6, 2.4, 0.6 M, four visits for each molarity. Results showed that sugar concentration changed the thresholds and durations of Nasonov gland exposure. However, this relationship was found only for Nasonov exposure before bees began to feed. During feeding, a protruded Nasonov gland was only observed for bees that had exposed it prior to feeding; suggesting that Nasonov gland exposure before feeding is a releaser of the during-feeding exposure. In variable reward programs, changes in sugar concentration were followed by changes in both thresholds and durations of exposure. However, Nasonov gland exposure during feeding did not appear to decrease based on measurements of the low profitability during the current foraging visit. These results suggest that Nasonov gland exposure is programmed on the basis of reward expectations, with the bees having acquired this information in the previous foraging visits to the food source.  相似文献   

17.
The effect of experience on the behavior of worker bees has been extensively investigated; however, few such studies have been conducted on male bees. Honeybee (Apis mellifera) males (drones), unlike the males of other social hymenopterans, return to their nest after performing a mating flight and have, therefore, an opportunity to learn from their experiences. This provides a chance to understand the significance of experience in social hymenopteran males. Here, we investigated whether experience improves the returning performance in drones (rate and time of return to the hive). We compared the returning performance of “Experienced” drones that were allowed to fly freely and thus had an opportunity to learn the position of the hive before the experiment with “Naive” drones that were not allowed to fly and therefore, had no opportunity to learn. We found that Experienced drones returned to the hive after a displacement, whereas Naive drones did not. Furthermore, time to return decreased with the age of drones. These results suggest that flight experience improves the returning performance, which should increase the possibility of mating success and overall colony fitness.  相似文献   

18.
Effects of insemination quantity on honey bee queen physiology   总被引:1,自引:0,他引:1  
Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.  相似文献   

19.
In recognition, discriminators use sensory information to make decisions. For example, honeybee (Apis mellifera) entrance guards discriminate between nest-mates and intruders by comparing their odours with a template of the colony odour. Comb wax plays a major role in honeybee recognition. We measured the rejection rates of nest-mate and non-nest-mate worker bees by entrance guards before and after a unidirectional transfer of wax comb from a 'comb donor' hive to a 'comb receiver' hive. Our results showed a significant effect that occurred in one direction. Guards in the comb receiver hive became more accepting of non-nest-mates from the comb donor hive (rejection decreased from 70 to 47%); however, guards in the comb donor hive did not become more accepting of bees from the comb receiver hive. These data strongly support the hypothesis that the transfer of wax comb increases the acceptance of non-nest-mates not by changing the odour of the bees, but by changing the template used by guards.  相似文献   

20.
Bumble bees alert to food with pheromone from tergal gland   总被引:4,自引:0,他引:4  
Foragers of Bombus terrestris are able to alert their nestmates to the presence of food sources. It has been supposed that this happens at least partially through the distribution of a pheromone inside the nest. We substantiate this claim using a behavioral test in which an alerting signal is transmitted from one colony to another by long distance air transport, so excluding all other modalities of information exchange. We then investigated the source of the pheromone and were able to show that a hexane extract from tergites V-VII of bumble bee workers elicits higher activity, like a successful forager does. Extracts from other glands, such as the mandibular, labial, hypopharyngeal, and Dufour's gland as well as extracts from other parts of the cuticle had no effect. This suggests that bumble bees possess a pheromone-producing gland, similar to the Nasanov gland in honey bees. Indeed, an extract from the honey bee Nasanov gland also proved to alert bumble bee workers, suggesting a possible homology of the glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号