首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
To understand the role of the lentivirus lytic peptide-1 region of the human immunodeficiency virus type 1 transmembrane glycoprotein (gp) 41 in viral infection, we examined the effects on virus replication of single amino acid deletions spanning this region in an infectious provirus of the HXB2 strain. Among the mutants analyzed, only the deletion of one of the two adjacent valine residues located at positions 832 and 833 (termed the Delta 833 mutant for simplicity) greatly reduced the steady-state, cell-associated levels of the Env precursor and gp120, as opposed to the wild-type virus. The altered Env phenotype resulted in severely impaired virus infectivity and gp120 incorporation into this mutant virion. Analyses of additional mutants with deletions at Ile-830, Ala-836, and Ile-840 demonstrated that the Delta 830 mutant exhibited the most significant inhibitory effect on Env steady-state expression. These results indicate that the N terminus of the lentivirus lytic peptide-1 region is critical for Env steady-state expression. Among the mutant viruses encoding Env proteins in which residues Val-832 and Val-833 were individually substituted by nonconserved amino acids Ala, Ser, or Pro, which were expected to disrupt the alpha-helical structure in the increasingly severe manner of Pro > Ser > Ala, only the 833P mutant exhibited significantly reduced steady-state Env expression. Pulse labeling and pulse-chase studies demonstrated that the Delta 830, Delta 833, and 833P mutants of Env proteins degraded more rapidly in a time-dependent manner after biosynthesis than did the wild-type Env. The results indicate that residue 830 and 833 mutations are likely to induce a conformational change in Env that targets the mutant protein for cellular degradation. Our study has implications about the structural determinants located at the N terminus of the lentivirus lytic peptide-1 sequence of gp41 that affect the fate of Env in virus-infected cells.  相似文献   

2.
By deletion mutagenesis analyses, we have examined the contribution of the immunosuppressive peptide (ISP) region within the transmembrane (TM) protein of Mason-Pfizer monkey virus to viral maturation and infectivity. Deletion of the entire region (mutant D105) results in the production of an Env precursor that is transport defective and therefore unable to be processed to mature glycoproteins. This mutation results in the release of noninfectious virions devoid of surface glycoproteins. A second deletion that removes the most highly conserved 11 amino acids of the ISP (mutant D33) does not affect the production, transport, or processing of the Env precursor yet produces virions that are noninfectious. The mutation was shown to cause the loss of interaction between the surface (SU) and TM proteins and result in the efficient shedding of gp70 into the culture medium. The released gp70 protein was biologically active and could still bind with high specificity to susceptible target cells. Since the ISP domain may represent an area of contact between SU and TM, it could provide an additional explanation for the amino acid sequence homology observed within this region of a variety of retroviruses.  相似文献   

3.
Poon DT  Coren LV  Ott DE 《Journal of virology》2000,74(8):3918-3923
HLA class II DR is one of the most abundant cell surface proteins incorporated onto human immunodeficiency virus type 1 (HIV-1) during budding. The mechanism for HLA class II protein incorporation is not known and may involve a viral protein. To determine whether Env affects HLA class II protein incorporation, HIV-1 virions, either with or without Env on their surface, were produced from HLA class II-expressing cells and analyzed by whole-virus immunoprecipitation with antisera against HLA class II proteins. HLA class II proteins were detected on virions only when wild-type Env was incorporated, while similar experiments showed that HLA class I proteins were incorporated independent of Env packaging. Therefore, the packaging of HIV-1 Env protein is required for the efficient incorporation of HLA class II but not class I proteins into the virion. Analysis of two Env mutants revealed that the presence of a 43-amino-acid sequence between amino acids 708 and 750 in the gp41(TM) cytoplasmic tail was required for efficient incorporation of HLA class II proteins. These data show that HIV-1 actively incorporates HLA class II proteins in a process that, either directly or indirectly, requires Env.  相似文献   

4.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

5.
Highly conserved amino acids in the second helix structure of the human immunodeficiency virus type 1 (HIV-1) MA protein were identified to be critical for the incorporation of viral Env proteins into HIV-1 virions from transfected COS-7 cells. The effects of these MA mutations on viral replication in the HIV-1 natural target cells, CD4+ T lymphocytes, were evaluated by using a newly developed system. In CD4+ T lymphocytes, mutations in the MA domain of HIV-1 Gag also inhibited the incorporation of viral Env proteins into mature HIV-1 virions. Furthermore, mutations in the MA domain of HIV-1 Gag reduced surface expression of viral Env proteins in CD4+ T lymphocytes. The synthesis of gp160 and cleavage of gp160 to gp120 were not significantly affected by MA mutations. On the other hand, the stability of gp120 in MA mutant-infected cells was significantly reduced compared to that in the parental wild-type virus-infected cells. These results suggest that functional interaction between HIV-1 Gag and Env proteins is not only critical for efficient incorporation of Env proteins into mature virions but also important for proper intracellular transport and stable surface expression of viral Env proteins in infected CD4+ T lymphocytes. A single amino acid substitution in MA abolished virus infectivity in dividing CD4+ T lymphocytes without significantly affecting virus assembly, virus release, or incorporation of Gag-Pol and Env proteins, suggesting that in addition to its functional role in virus assembly, the MA protein of HIV-1 also plays an important role in other steps of virus replication.  相似文献   

6.
Growth kinetics in lymphocytic H9 and M8166 cells of two mutants of human immunodeficiency virus type 1 (HIV-1) with deleted gp41 cytoplasmic tails were examined. While the mutant viruses designated CTdel-44 and CTdel-144 were able to grow in M8166 cells, they were unable to grow in H9 cells. Transfection and single-round infectivity assays demonstrated that they are defective in the early phase of viral replication in H9 cells. Analysis of the mutant virions revealed drastically reduced incorporation of Env gp120 (compared with the incorporation of wild-type virions) in H9 cells but normal incorporation in M8166 cells. These results indicate that the HIV-1 cytoplasmic tail of gp41 determines virus infectivity in a cell-dependent manner by affecting incorporation of Env into virions and suggest the involvement of a host cell factor(s) in the Env incorporation.  相似文献   

7.
Two highly conserved cationic amphipathic alpha-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses. Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that the highly conserved LLP domains perform critical but distinct functions in Env incorporation and fusogenicity.  相似文献   

8.
We have investigated how truncation of the cytoplasmic domain of the transmembrane (TM) glycoprotein of simian immunodeficiency virus (SIV) modulates the host range of this virus. Termination codons were introduced into the env gene of SIVmac239 which resulted in the truncation of the transmembrane protein from a wild-type 354 amino acids (TM354) to 207 (TM207) and 193 (TM193) amino acids. Expression of the wild-type and mutant env genes from a simian virus 40-based vector resulted in normal biosynthesis and processing of the glycoproteins to gp130 and gp41 or the truncated TM proteins (gp28 and gp27). When expressed on the surface of COS-1 cells, all three glycoproteins mediated fusion of both CEMX174 and HUT78 cells. Virions containing the wild-type and mutant glycoproteins were capable of efficient replication in macaque peripheral blood lymphocytes and CEMX174 cells; in contrast, only virions that contained TM207 were capable of rapid infection of HUT78 cells. Both truncated glycoproteins were capable of efficiently mediating infection of both CEMX174 and HUT78 cells by an env-deficient human immunodeficiency virus. The wild-type SIV glycoprotein, however, was unable to mediate human immunodeficiency virus infection of HUT78 cells when assayed with this system. An analysis of the protein composition of SIV released from infected CEMX174 cells showed that the mutant virions contained significantly higher levels of glycoprotein compared with the wild type. These results demonstrate that truncation of the SIV cytoplasmic domain removes a block at the level of glycoprotein-mediated virus entry into HUT78 cells and points to a role for glycoprotein density in determining virus tropism.  相似文献   

9.
The incorporation of envelope (Env) glycoproteins into virions is an essential step in the retroviral replication cycle. Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), encode Env glycoproteins with unusually long cytoplasmic tails, the functions of which have not been fully elucidated. In this study, we examine the effects on virus replication of a number of mutations in a helical motif (alpha-helix 2) located near the center of the HIV-1 gp41 cytoplasmic tail. We find that, in T-cell lines, small deletions in this domain disrupt the incorporation of Env glycoproteins into virions and markedly impair virus infectivity. Through the analysis of viral revertants, we demonstrate that a single amino acid change (34VI) in the matrix domain of Gag reverses the Env incorporation and infectivity defect imposed by a small deletion near the C terminus of alpha-helix 2. These results provide genetic evidence, in the context of infected T cells, for an interaction between HIV-1 matrix and the gp41 cytoplasmic tail and identify domains of both proteins involved in this putative interaction.  相似文献   

10.
We recently demonstrated that a single amino acid substitution in matrix residue 12 (12LE) or 30 (30LE) blocks the incorporation of human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into virions and that this block can be reversed by pseudotyping with heterologous retroviral envelope glycoproteins with short cytoplasmic tails or by truncating the cytoplasmic tail of HIV-1 transmembrane glycoprotein gp41 by 104 or 144 amino acids. In this study, we mapped the domain of the gp41 cytoplasmic tail responsible for the block to incorporation into virions by introducing a series of eight truncation mutations that eliminated 23 to 93 amino acids from the C terminus of gp41. We found that incorporation into virions of a HIV-1 envelope glycoprotein with a deletion of 23, 30, 51, or 56 residues from the C terminus of gp41 is specifically blocked by the 12LE matrix mutation, whereas truncations of greater than 93 amino acids reverse this defect. To elucidate the role of matrix residue 12 in this process, we introduced a number of additional single amino acid substitutions at matrix positions 12 and 13. Charged substitutions at residue 12 blocked envelope incorporation and virus infectivity, whereas more subtle amino acid substitutions resulted in a spectrum of envelope incorporation defects. To characterize further the role of matrix in envelope incorporation into virions, we obtained and analyzed second-site revertants to two different matrix residue 12 mutations. A Val-->Ile substition at matrix amino acid 34 compensated for the effects of both amino acid 12 mutations, suggesting that matrix residues 12 and 34 interact during the incorporation of HIV-1 envelope glycoproteins into nascent virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号