首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Gene-expression responses to an input can depend on growth conditions; in this issue, Sasson et al. (2012) show that this dependence is lower when the input results in a high degree of promoter occupancy.  相似文献   

2.
Hundreds of studies have assessed variation in the degree to which people experience disgust toward substances associated with pathogens, but little is known about the mechanistic sources of this variation. The current investigation uses olfactory perception and threshold methods to test whether it is apparent at the cue-detection level, at the cue-interpretation level, or both. It further tests whether relations between disgust sensitivity and olfactory perception are specific to odors associated with pathogens. Two studies (N's = 119 and 160) of individuals sampled from a Dutch university each revealed that pathogen disgust sensitivity relates to valence perceptions of odors found in pathogen sources, but not to valence perceptions of odors not associated with pathogens, nor to intensity perceptions of odors of either type. Study 2, which also assessed olfactory thresholds via a three-alternative forced-choice staircase method, did not reveal a relation between pathogen disgust sensitivity and the ability to detect an odor associated with pathogens, nor an odor not associated with pathogens. In total, results are consistent with the idea that pathogen disgust sensitivity relates to how olfactory pathogen cues are interpreted after detection, but not necessarily to the ability to detect such cues.  相似文献   

3.
4.
5.
Acta Biochimica et Biophysica Sinica (ABBS) is a scientific journal publishing monthly research papers, short communications and minireviews in biochemistry, molecular biology and biophysics. Research papers and short communications should report original work not published or considered for publication elsewhere. Minireviews should provide a concise introduction to the subject matter to inform the readers of the latest developments in a certain area.  相似文献   

6.
《Entomologia Sinica》2004,11(2):F003-F003
  相似文献   

7.
8.
Acta Biochimica et Biophysica Sinica (ABBS) is a scientific journal publishing monthly research papers, short com-munications and minireviews in biochemistry, molecular biology and biophysics. Research papers and short communi-cations should report original work not published or considered for publication elsewhere. Minireviews should provide  相似文献   

9.
10.
《菌物学报》2020,(1):I0005-I0005
  相似文献   

11.
Valladares and Gianoli (2007) tried to answer a key question, “how much ecology do we need to know to restore Mediterranean ecosystems?” by focusing on (1) plant–plant interactions; (2) environmental heterogeneity and the potential adaptation of transplanted plants; and (3) phenotypic plasticity of the planted species. We consider their choice of topics incomplete and potentially misleading because (1) it is clearly biased toward a narrow set of research topics (phenotypic plasticity, facilitation, and climate change); (2) it assumes that active restoration, and specifically revegetation, is needed; and (3) it conveys a false perception that other basic ecological aspects of Mediterranean ecosystems are sufficiently known. Instead, we review the current knowledge on seed dispersal, succession, and ecosystem functioning for Mediterranean ecosystems. We argue that decades of research on these topics have yielded few practical guidelines for restoration, something that needs to be urgently corrected. First, the current “establishment limitation paradigm” for plant recruitment does not acknowledge the role of dispersal limitation at large spatial scales. More attention should be paid to nucleation processes and directed seed dispersal mediated by animals. Second, studies of vegetation dynamics and succession in the Mediterranean have led to an overly simplistic view of successional dynamics. How fast and deterministic succession is remains mostly unexplored; long‐term monitoring of successional dynamics at different spatial scales is urgently needed. Third, information on the functional status of Mediterranean ecosystems is required to identify processes hindering natural recovery after disturbances and to set priorities on the areas and ecosystem components to be restored.  相似文献   

12.
陆地生态系统植被氮磷化学计量研究进展   总被引:17,自引:0,他引:17       下载免费PDF全文
刘超  王洋  王楠  王根轩 《植物生态学报》2012,36(11):1205-1216
 因化学功能的耦合和元素的不可替代性, 植物对N、P的需求和利用存在严格的比例。植物N、P化学计量在不同功能群、生长地区、生长季、器官之间以及环境梯度下存在明显的变化规律。多数研究从N、P浓度、N:P及N、P间异速指数等角度分析了植物化学计量变化规律, 并探讨其在全球范围内的具体数值。为增进对植物响应全球变化的理解, 该文综述了N、P化学计量的影响因素及其机理的最新研究进展, 并指出未来拟重点研究的方向。  相似文献   

13.

Background and Aims

Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management.

Scope

We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change.

Conclusions

To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels.  相似文献   

14.
Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges.  相似文献   

15.
退化生态系统植被恢复的生理生态学研究进展   总被引:28,自引:4,他引:24  
赵平 《应用生态学报》2003,14(11):2031-2036
自然的力量和人类的干预导致局部性、区域性甚至全球性植物群落格局的变化。不管这种变化的原因是什么,变化的强度如何,生态系统常常通过自然演替能够恢复它们大部分的特征,亦可以通过人类的介入进行修复,退化生态系统恢复的实质是群落演替,是生态系统结构和功能从简单到复杂、从低级向高级演变的过程,植物生理生态特性研究可以解释退化生态系统植被恢复的一些宏观现象,并为植被恢复构建先锋群落提供可靠的科学依据,本文综述退化生态系统植被恢复的生理生态学研究的进展。  相似文献   

16.
Although the study of adaptation is central to biology, two types of adaptation are recognized in the biological field: physiological adaptation (accommodation or acclimation; an individual organism’s phenotype is adjusted to its environment) and evolutionary–biological adaptation (adaptation is shaped by natural selection acting on genetic variation). The history of the former concept dates to the late nineteenth and early twentieth centuries, and has more recently been systemized in the twenty-first century. Approaches to the understanding of phenotypic plasticity and learning behavior have only recently been developed, based on cellular–histological and behavioral–neurobiological techniques as well as traditional molecular biology. New developments of the former concepts in phenotypic plasticity are discussed in bacterial persistence, wing di-/polymorphism with transgenerational effects, polyphenism in social insects, and defense traits for predator avoidance, including molecular biology analyses. We also discuss new studies on the concept of genetic accommodation resulting in evolution of phenotypic plasticity through a transgenerational change in the reaction norm based on a threshold model. Learning behavior can also be understood as physiological phenotypic plasticity, associating with the brain–nervous system, and it drives the accelerated evolutionary change in behavioral response (the Baldwin effect) with memory stock. Furthermore, choice behaviors are widely seen in decision-making of animal foragers. Incorporating flexible phenotypic plasticity and learning behavior into modeling can drastically change dynamical behavior of the system. Unification of biological sciences will be facilitated and integrated, such as behavioral ecology and behavioral neurobiology in the area of learning, and evolutionary ecology and molecular developmental biology in the theme of phenotypic plasticity.  相似文献   

17.
Although the concepts of scale and biological diversity independently have received rapidly increasing attention in the scientific literature since the 1980s, the rate at which the two concepts have been investigated jointly has grown much more slowly. We find that scale considerations have been incorporated explicitly into six broad areas of investigation related to biological diversity: (1) heterogeneity within and among ecosystems, (2) disturbance ecology, (3) conservation and restoration, (4) invasion biology, (5) importance of temporal scale for understanding processes, and (6) species responses to environmental heterogeneity. In addition to placing the papers of this Special Feature within the context of brief summaries of the expanding literature on these six topics, we provide an overview of tools useful for integrating scale considerations into studies of biological diversity. Such tools include hierarchical and structural-equation modelling, kriging, variable-width buffers, k -fold cross-validation, and cascading graph diagrams, among others. Finally, we address some of the major challenges and research frontiers that remain, and conclude with a look to the future.  相似文献   

18.
Ecological limits to plant phenotypic plasticity   总被引:7,自引:1,他引:6  
Phenotypic plasticity is considered the major means by which plants cope with environmental heterogeneity. Although ubiquitous in nature, actual phenotypic plasticity is far from being maximal. This has been explained by the existence of internal limits to its expression. However, phenotypic plasticity takes place within an ecological context and plants are generally exposed to multifactor environments and to simultaneous interactions with many species. These external, ecological factors may limit phenotypic plasticity or curtail its adaptive value, but seldom have they been considered because limits to plasticity have typically addressed factors internal to the plant. We show that plastic responses to abiotic factors are reduced under situations of conservative resource use in stressful and unpredictable habitats, and that extreme levels in a given abiotic factor can negatively influence plastic responses to another factor. We illustrate how herbivory may limit plant phenotypic plasticity because damaged plants can only rarely attain the optimal phenotype in the challenging environment. Finally, it is examined how phenotypic changes involved in trait-mediated interactions can entail costs for the plant in further interactions with other species in the community. Ecological limits to plasticity must be included in any realistic approach to understand the evolution of plasticity in complex environments and to predict plant responses to global change.  相似文献   

19.
Ecological network studies are providing important advances about the organization, stability and dynamics of ecological systems. However, the ecological networks approach is being integrated very slowly in plant community ecology, even though the first studies on plant facilitation networks (FNs) were published more than a decade ago. The study of interaction networks between established plants and plants recruiting beneath them, which we call Recruitment Networks (RNs), can provide new insights on mechanisms driving plant community structure and dynamics. RNs basically describe which plants recruit under which others, so they can be seen as a generalisation of the classic FNs since they do not imply any particular effect (positive, negative or neutral) of the established plants on recruiting ones. RNs summarise information on the structure of sapling banks. More importantly, the information included in RNs can be incorporated into models of replacement dynamics to evaluate how different aspects of network structure, or different mechanisms of network assembly, may affect plant community stability and species coexistence. To allow an efficient development of the study of FNs and RNs, here we unify concepts, synthesise current knowledge, clarify some conceptual issues, and propose basic methodological guidelines to standardise sampling methods that could make future studies of these networks directly comparable.  相似文献   

20.
Deron E. Burkepile 《Oikos》2013,122(2):306-312
‘Grazing ecosystem’ is typically used to describe terrestrial ecosystems with high densities of mammalian herbivores such as the Serengeti in East Africa or the Greater Yellowstone Ecosystem in North America. These abundant, large herbivores determine plant community dynamics and ecosystem processes. The general concepts that define grazing ecosystems also aptly describe many aquatic ecosystems, including coral reefs, seagrass beds, and lakes, where herbivores such as parrotfishes, turtles, and zooplankton have strong impacts on ecosystem processes. Here, I compare the ecology of grazing ecosystems in search of common concepts that transcend the terrestrial‐aquatic boundary. Specifically, I evaluate: 1) the feedbacks between herbivory and primary production, 2) the roles of herbivore richness and facilitation, 3) how predators and diet quality shape patterns of herbivory, and 4) how altering herbivory mediates alternative states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号