首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
To understand molecular mechanisms of the fruiting body development in basidiomycetes, we attempted to isolate developmentally regulated genes expressed specifically during the fruiting body formation of Lentinula edodes (Shiitake-mushroom). cDNA representational difference analysis (cDNA-RDA) between vegetatively growing mycelium and two developmental substages, primordium and mature fruiting body, resulted in an isolation of 105 individual genes (51 in primordium and 54 in mature fruiting body, respectively). A search of homology with the protein databases and two basidiomycetous genomes in Phanerochaete chrysosporium and Coprinopsis cinerea revealed that the obtained genes encoded various proteins similar to those involved in general metabolism, cell structure, signal transduction, and responses to stress; in addition, there were apparently several metabolic pathways and signal transduction cascades that could be involved in the fruiting body development. The expression products of several genes revealed no significant homologies to those in the databases, implying that those genes are unique in L. edodes and the encoding products may possess possible functions in the course of fruiting body development. RT-PCR analyses revealed that 20 candidates of the obtained genes were specifically or abundantly transcribed in the course of the fruiting body formation, suggesting that the obtained genes in this work play roles in fruiting body development in L. edodes.  相似文献   

6.
This study investigated the molecular mechanism of the fruiting body development and sporulation in the cap of the Shiitake mushroom, Lentinula edodes. Although there has been much research into L. edodes, there remain significant gaps in our knowledge of how the species reproduces. In order to provide molecular resources and to understand the molecular mechanism of the fruiting body development in basidiomycete comprehensively, we searched for the genes which are important for fruiting body development and sporulation in the cap of mature fruiting body of L. edodes by using the whole-genome approach. Massive cDNA pyrosequencing was used to generate >7000 sequence contigs from mature fruiting bodies. We used Gene Ontology to categorize the contigs to form the catalog of genes expressed at the stage of the mature fruiting body. We also assigned the contigs into the KEGG pathways. The catalog of expressed genes indicates that the mature fruiting bodies (1) sense the external environment, (2) transmit signals to express genes through regulatory systems, (3) produce many proteins, (4) degrade unwanted proteins, (5) perform extensive biosynthesis, (6) generate energy, (7) regulate the internal environment, (8) transport molecules, (9) carry out cell division, and (10) differentiate and develop. After establishing the catalog of expressed genes in L. edodes, we used the LongSAGE approach to analyze the expression levels of genes found in mature fruiting bodies before (FB) and after (FBS) spores appeared. Gene-expression patterns according to GO categories were similar in these two stages. We have also successfully identified genes differentially expressed in FB and FBS. Fold-changes in expression levels of selected genes based on LongSAGE tag counts were similar to those obtained by real-time RT-PCR. The consistency between real-time RT-PCR and LongSAGE results indicates reliability of the LongSAGE results. Overall, this study provides valuable information on the fruiting processes of L. edodes through a combination of massive cDNA pyrosequencing and LongSAGE sequencing, and the knowledge thereby obtained may provide insight into the improvement of the yield of commercially grown Shiitake mushrooms.  相似文献   

7.
8.
9.
10.
11.
香菇是世界产量第二大食用菌,栽培历史悠久。在木屑袋料栽培模式下,香菇发育可以分为菌丝生长期(G)、菌丝褐化期(B)、原基形成期(P)以及出菇期(FB)4个阶段。褐化期和原基形成期是香菇从营养生长期到生殖生长两个关键发育阶段,对香菇子实体产量和质量至关重要。本研究以3种不同栽培材料为重复,对香菇发育的前3个阶段进行了转录组分析。主成分分析和相似性分析表明,基因随着发育进程的推进,不同栽培基质样本的基因表达特征相似。以菌丝生长阶段的转录本为参照,通过基因差异表达分析,获得与菌丝褐化成熟和原基形成相关的基因,并对这些基因进行GO和KEGG功能富集分析;其次,对9个转录本数据进行加权基因共表达网络分析(WGCNA),分别获得了与菌丝生长、褐化阶段及原基形成各阶段高度相关的黑色、蓝色及黄色基因模块,并利用网络节点分析获得了与菌丝褐化成熟和原基形成得到7个关键基因;最后,结合差异基因和基因模块分析,得到了菌丝生长阶段的17个重要基因、褐化阶段的167个重要基因以及原基形成阶段的67个重要基因。通过多分析手段结合为筛选候选基因提供了更为高效的方法。  相似文献   

12.
As in many other fleshy fruits, the predominant organic acids in ripe peach ( Prunus persica (L.) Batsch) fruit are malic and citric acids. The accumulation of these metabolites in fruit flesh is regulated during fruit development. Six peach fruit-related genes implicated in organic acid metabolism (mitochondrial citrate synthase; cytosolic NAD-dependent malate dehydrogenase, and cytosolic NADP-dependent isocitrate dehydrogenase) and storage (vacuolar proton translocating pumps: one vacuolar H+-ATPase, and two vacuolar H+-pyrophosphatases) were cloned. Five of these peach genes were homologous to genes isolated from fruit in other fleshy fruit species. Phylogenetic and expression analyses suggested the existence of a particular vacuolar pyrophosphatase highly expressed in fruit. The sixth gene was the first cytosolic NAD-dependent malate dehydrogenase gene isolated from fruit. Gene expression was studied during the fruit development of two peach cultivars, a normal-acid (Fantasia) and a low-acid (Jalousia) cultivar. The overall expression patterns of the organic acid-related genes appeared strikingly similar for the two cultivars. The genes involved in organic acid metabolism showed a stronger expression in ripening fruit than during the earlier phases of development, but their expression patterns were not necessarily correlated with the changes in organic acid contents. The tonoplast proton pumps showed a biphasic expression pattern more consistent with the patterns of organic acid accumulation, and the tonoplast pyrophosphatases were more highly expressed in the fruit of the low-acid cultivar during the second rapid growth phase of the fruit.  相似文献   

13.
Identification and characterization of zebrafish ocular formation genes.   总被引:1,自引:0,他引:1  
To study genes that are specifically expressed in the eyes, we employed microarray and in situ hybridization analyses to identify and characterize differentially expressed ocular genes in eyeless masterblind (mbl-/-) zebrafish (Danio rerio). Among 70 differentially expressed genes in the mbl-/- mutant identified by microarray analysis, 8 down-regulated genes were characterized, including 4 eye-specific genes, opsin 1 short-wave-sensitive 1 (opn1sw1), crystallinbetaa1b (cryba1b), crystallinbetaa2b (cryba2b), and crystallingamma M2d3 (crygm2d3); 2 eye and brain genes, ATPase, H+ transporting, lysosomal, V0 subunit c (atp6v0c) and basic leucine zipper and W2 domains 1a (bzw1a); and 2 constitutive genes, heat shock protein 8 (hspa8) and ribosomal protein L7a (rpl7a). In situ hybridization experiments confirmed down-regulation of these 8 ocular formation genes in mbl-/- zebrafish and showed their ocular and dynamic temporal expression patterns during zebrafish early development. Further, an automated literature analysis of the 70 differentially expressed genes identified a sub-network of genes with known associations, either with each other or with ocular structures or development, and shows how this study contributes to the current body of knowledge.  相似文献   

14.
Functional approaches toward the identification of auxin receptors developed along two major lines: the isolation and characterization of mutants or transgenic plants affected in their responses to the hormone and the study of early auxin effects at the cell level such as expression of specific genes or modifications of plasma membrane properties. The combination of these approaches with those aiming at the molecular characterization of auxin binding proteins as putative auxin receptors allowed to bring further insight into the mechanisms of auxin perception by plant cells. Studies of membrane responses to auxin clearly demonstrated the existence of elementary response chains to auxin at the plasma membrane, the activation of auxin responsive proteins leading to changes in the membrane potential via the stimulation of the proton pump ATPase or the modulation of ion channels. A two-component model is proposed for the organization of functional auxin perception units at the plasma membrane, comprising an auxin-binding moiety related to the major auxin-binding protein from maize (ZmER-abp1), associated to a transmembrane protein. Current research investigates the relevance of this model and tries to assess whether early responses at the plasma membrane share common perception or transduction steps with gene expression responses and participate in more integrated biological responses to auxin.  相似文献   

15.
The effect of a protonophoric uncoupler (CCCP) on the different cellular compartments was investigated in yeast grown aerobically on lactate. These cells were incubated in a resting cell medium under three conditions; in aerobiosis with lactate or glucose or in anaerobiosis with glucose as energetic substrate. For each condition, in vivo 31P NMR was used to measure pH gradients across vacuolar and plasma membrane and phosphorylated compound levels. Respiratory rate (aerobic conditions) and TPP+ uptake were measured independently. Concerning the polyphosphate metabolism, spontaneous NMR-detected polyphosphate breakdown occurred, in anaerobiosis and in the absence of CCCP. In contrast, in aerobiosis, polyphosphate hydrolysis was induced by addition of either CCCP or a vacuolar membrane ATPase-specific inhibitor, bafilomycin A1. Moreover, polyphosphates were totally absent in a null vacuolar ATPase activity mutant. The vacuolar polyphosphate content depended on two factors: vacuolar pH value, strictly linked to the vacuolar H(+)-ATPase activity, and inorganic phosphate concentration. CCCP was more efficient in dissipating the proton electrochemical gradient across vacuolar and mitochondrial membranes than across the plasma membrane. This discrepancy can be essentially explained by a difference of stimulability of each proton pump involved. As long as the energetic state (measured by NDP + NTP content) remains high, the plasma membrane proton ATPase is able to compensate the proton leak. Moreover, this ATPase contributes only partially to the generation of delta pH. The maintenance of the delta pH across the plasma membrane, that of the energetic state, and the cellular TPP+ uptake depend on the nature of the ATP-producing process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
19.
The effect of different substrates and various developmental stages (mycelium growth, primordium appearance, and fruiting-body formation) on laccase production in the edible mushroom Lentinula edodes was studied. The cap of the mature mushroom showed the highest laccase activity, and laccase activity was not stimulated by some well-known laccase inducers or sawdust. For our molecular studies, two genomic DNA sequences, representing allelic variants of the L. edodes lac1 gene, were isolated, and DNA sequence analysis demonstrated that lac1 encodes a putative polypeptide of 526 amino acids which is interrupted by 13 introns. The two allelic genes differ at 95 nucleotides, which results in seven amino acid differences in the encoded protein. The copper-binding domains found in other laccase enzymes are conserved in the L. edodes Lac1 proteins. A fragment of a second laccase gene (lac2) was also isolated, and competitive PCR showed that expression of lac1 and lac2 genes was different under various conditions. Our results suggest that laccases may play a role in the morphogenesis of the mushroom. To our knowledge, this is the first report on the cloning of genes involved in lignocellulose degradation in this economically important edible fungus.  相似文献   

20.
Five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var.deliciosa cv. Hayward) were isolated from a library made from young fruit, 8–10 days after anthesis. One gene (pKIWI503) has low levels of expression in young fruit but is induced late in fruit development and during fruit ripening, and has some homology to plant metallothionein-like proteins. The other four genes are highly expressed in young fruit with reduced expression in the later stages of fruit development. pKIWI504 has strong homology to plant metallothionein-like proteins and pKIWI505 exhibits homology to the -subunit of the mitochondrial ATP synthase gene. The two other genes (pKIWI501 and 502) encode proteins with no significant homology to other known sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号