首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Insect larval characteristics, including chaetotaxy, are used widely in systematics, including for classification and phylogenetic reconstruction. Despite their common use, basic aspects of larval morphology, including intraspecific variation, effects of relatedness between individuals, sex and asymmetry, are little investigated. In the larvae of the noctuid moth Orthosia gothica, properties of shape and size were separated to examine their effects separately. Siblings were found not to cover the entire variation of a population, and therefore specimens originating from a single female do not represent independent samples. This methodological bias may potentially lead to wrong conclusions regarding species characteristics. We observed slight differences between the left and right sides of the specimens studied, implying that one side should be examined consistently in studying larval chaetotaxy. We found no differences between sexes, but this may apply only to the species examined here; in general, sex should be determined and accounted for. We discovered considerable variation in seta numbers, which further emphasizes the importance of sufficient material, particularly in cladistic analyses in which setal counts are often used as characters.  相似文献   

2.
Abstract. The morphology and chaetotaxy of the first instar larvae of six species belonging to the genera Hipparchia, Kanetisa and Chazara are described. Specific characters are stated, drawn mainly from size, setal length and morphology, and the shape of the suranal plate. Several characters, other than chaetotaxy, that are of potential use in nymphalid systematics are discussed. The larval chaetotaxy is briefly compared with that of both heliconiine and danaine first instar larvae.  相似文献   

3.
Many have argued strongly that incorporation of evolutionary theory into systematics is dangerously circular, while others have maintained that such an integrated approach increases the accuracy of phylogenetic inference. Here, it is demonstrated that such blanket statements regarding exclusion or inclusion of evolutionary principles in systematics fail to distinguish between two very different types of principles. ‘Phylogeny-neutral’ evolutionary principles are those inferred without any recourse to specific phylogenetic hypotheses (e.g. via developmental genetics, biomechanics). In contrast, ‘phylogeny-dependent’ principles are those which can only be inferred on the basis of specific phylogenetic hypotheses (e.g. character associations detected via ‘comparative methods’). Inclusion of phylogeny-neutral principles in systematic studies as a priori assumptions can be justified, since these principles have (often strong) external empirical support from other spheres of investigation. However, inclusion of phylogeny-dependent principles in systematic studies is circular, since such principles have no external empirical support but are themselves derived from systematic studies. Advocating inclusion or exclusion of all (or as many as possible) evolutionary principles from phylogenetic analysis is therefore misguided. Rather, phylogeny-neutral principles are independently supported and can be included, while phylogeny-dependent principles are unjustified assumptions and should be excluded to avoid circularity. However, integration of complex phylogeny-neutral principles in systematics can create operational problems, even though there are no methodological reasons against their inclusion.  相似文献   

4.
Practicing phylogenetic systematics as a sophisticated falsification research program provides a basis for claiming increased knowledge of sister species relationships and synapomorphies as evidence for those cladistic propositions. Research in phylogenetic systematics is necessarily cyclic, and the place where the positive shift in understanding occurs is subsequent to discovering the most parsimonious cladogram(s). A priori differential character weighting is inconsistent with seeking the maximally corroborated cladogram (sensu Popper), because weighting adds to background knowledge, the evidence being then less improbable than it would be otherwise. Also, estimating weights from character state frequencies on a cladogram is inconsistent with the view that history is unique. Sophisticated falsification provides the place in the cycle of phylogenetic systematic research where weight of evidence can be evaluated and these inconsistencies do not apply. On balance, phylogenetic systematics appears to achieve greater coherence and generality as a result of focusing on the foundations for claiming increased knowledge and avoiding efforts to differentially weight characters.  相似文献   

5.
6.
A brief history of comparative studies of nucleic acids for systematic purposes is given. These studies were initiated by a group of Moscow State University scientists headed by A. N. Belozersky. Based mostly on comparative DNA studies, some main dogmas of a new branch of systematics were gradually developed. In Russia, this new branch of systematics is called "genosystematics". Some of the main results obtained by genosystematics since its birth (1957) and up to its "christening" (1974) are described.  相似文献   

7.
This article introduces a special issue on zebrafish biology that attempts to integrate developmental genetics with comparative studies of other fish species. For zebrafish researchers, comparative work offers a better understanding of the evolutionary history of their model system. Comparative biologists can gain many insights from the developmental and genetic mechanisms revealed in zebrafish that have contributed to the huge range of morphological variation among fishes that has arisen over millions of years. These ideas are considered here in various contexts, including systematics, genome organization and the development of the nervous system, pigmentation, craniofacial skeleton and dentition. Studies of the zebrafish in phylogenetic context provide an opportunity for synergy between communities using these two fundamentally different approaches.  相似文献   

8.
The present paper is an argument in support of the continued importance of morphological systematics and a plea for improving molecular phylogenetic analyses by addressing explicit character transformations. We use here the inference of key innovations and adaptive radiations to demonstrate why morphological systematics is still relevant and necessary. After establishing that theories of phylogenetic relationship offer robust explanatory bases for discussing evolutionary diversification, the following topics are addressed: (1) the inference of key innovations grounded in phylogenetic analyses; (2) the epistemic distinction between character ‘mapping’ and relevant evidence in systematic and evolutionary studies; and (3) key innovations in molecular phylogenetics. We emphasize that the discovery of key innovations, in fossil or extant taxa, further strengthens the importance of morphology in systematic and evolutionary inferences, as they reveal scenarios of character transformation that have led to asymmetrical sister-group diversification. Our main conclusion is that understanding characters in and of themselves, when properly contextualized systematically, is what evolutionary biologists should be concerned with, whereas the analysis of tree topology alone, in which statistical nodal support measures are the sole indicators of phylogenetic affinity, does not lead to a fuller understanding of key innovations.  相似文献   

9.
Several ways in which morphology is used in systematic and evolutionary research in angiosperms are shown and illustrated with examples: 1) searches for special structural similarities, which can be used to find hints for hitherto unrecognized relationships in groups with unresolved phylogenetic position; 2) cladistic studies based on morphology and combined morphological and molecular analyses; 3) comparative morphological studies in new, morphologically puzzling clades derived from molecular studies; 4) studies of morphological character evolution, unusual evolutionary directions, and evolutionary lability based on molecular studies; and 5) studies of organ evolution. Conclusions: Goals of comparative morphology have shifted in the present molecular era. Morphology no longer plays the primary role in phylogenetic studies. However, new opportunities for morphology are opening up that were not present in the premolecular era: 1) phylogenetic studies with combined molecular and morphological analyses; 2) reconstruction of the evolution of morphological features based on molecularly derived cladograms; 3) refined analysis of morphological features induced by inconsistencies of previous molecular and molecular phylogenetic analyses; 4) better understanding of morphological features by judgment in a wider biological context; 5) increased potential for including fossils in morphological analyses; and 6) exploration of the evolution of morphological traits by integration of comparative structural and molecular developmental genetic aspects (Evo-Devo); this field is still in its infancy in botany; its advancement is one of the major goals of evolutionary botany.  相似文献   

10.
Recent phylogenetic research indicates that vascular plants evolved from bryophyte-like ancestors and that this involved extensive modifications to the life cycle. These conclusions are supported by a range of systematic data, including gene sequences, as well as evidence from comparative morphology and the fossil record. Within vascular plants, there is compelling evidence for two major clades, which have been termed lycophytes (clubmosses) and euphyllophytes (seed plants, ferns, horsetails). The implications of recent phylogenetic work are discussed with reference to life cycle evolution and the interpretation of stratigraphic inconsistencies in the early fossil record of land plants. Life cycles are shown to have passed through an isomorphic phase in the early stages of vascular plant evolution. Thus, the gametophyte generation of all living vascular plants is the product of massive morphological reduction. Phylogenetic research corroborates earlier suggestions of a major representational bias in the early fossil record. Mega-fossils document a sequence of appearance of groups that is at odds with that predicted by cladogram topology. It is argued here that the pattern of appearance and diversification of plant megafossils owes more to changing geological conditions than to rapid biological diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号