首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
 The uptake of 45Ca and/or 14C by the skeleton of coral colonies has been commonly used to investigate the processes of calcification. This study reports the differential uptake of these tracers within different regions of the skeleton and tissues of individual corallites and polyps of the hermatypic coral Galaxea fascicularis. Incubation in 45Ca in the light resulted in 80 percent of the 45Ca taken up being deposited in the skeleton. Autoradiography of transverse and longitudinal slices of freeze-substituted polyps and corallites showed that in the light 45Ca was incorporated into the exsert septa, the outside of the thecal walls of the corallite and the inner edges of the septa. Incorporation did not occur in the costae. The radioactivity in the skeleton was considerably greater than in the tissues. In the dark, or in the presence of the photosynthetic inhibitor Diuron, 45Ca was taken up by the exsert septa and was patchily distributed in the corallite walls which suggests that it was not a result of isotopic exchange. The differential incorporation of 45Ca onto the exsert septa was confirmed by scintillation counting. Negligible radioactivity remained in the extrathecal coelenteron after a brief 5 min rinse in non-radioactive seawater. Only 0.1% of 14C taken up in the light was incorporated into the skeleton and this was confirmed by autoradiography. In the presence of Diuron or in the dark, very little 14C was incorporated into tissues or skeleton and in autoradiographs was either not evident in the skeleton or the distribution was similar to that seen in autoradiographs of 45Ca uptake. These results show that the deposition of 45Ca, and therefore calcium carbonate, occurs at specific loci on the skeleton of a corallite. In the dark, deposition occurs specifically at the growing points of the corallite. Differential deposition of calcium carbonate within individual corallites has not been previously reported. Accepted: 27 May 1997  相似文献   

2.
The skeletal ontogeny of the Micrabaciidae, one of two modern basal scleractinian lineages, is herein reconstructed based on serial micro‐computed tomography sections and scanning electron micrographs. Similar to other scleractinians, skeletal growth of micrabaciids starts from the simultaneous formation of six primary septa. New septa of consecutive cycles arise between septa of the preceding cycles from unique wedge‐shaped invaginations of the wall. The invagination of wall and formation of septa are accompanied by development of costae alternating in position with septa. During corallite growth, deepening invagination of the wall results in elevation of septa above the level of a horizontal base. The corallite wall is regularly perforated thus invaginated regions consist of pillars inclined downwardly and outwardly from the lower septal margins. Shortly after formation of septa (S2 and higher cycles) their upper margins bend and fuse with the neighboring members of a previous cycle, resulting in a unique septal pattern, formerly misinterpreted as “septal bifurcation.” Septa as in other Scleractinia are hexamerally arranged in cycles. However, starting from the quaternaries, septa within single cycles do not appear simultaneously but are inserted in pairs and successively flank the members of a preceding cycle, invariably starting from those in the outermost parts of the septal system. In each pair, the septum adjacent to older septa arises first (e.g., the quinaries between S2 and S4 before quinaries between S3 and S4). Unique features of micrabaciid skeletal ontogeny are congruent with their basal position in scleractinian phylogeny, which was previously supported by microstructural and molecular data. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The deposition of four crystal types at the growth surface of the septa of several color morphs of the coral Galaxea fascicularis was investigated over a 24-h period. Results suggest that nanocrystals, on denticles at the apices of exsert septa, may be the surface manifestation of centers of calcification. These crystals were also found on the septa of the axial corallite of Acropora formosa. The deposition of nanocrystals appears to be independent of diurnal rhythms. Internally and proximal to the septal apices, distinct clusters of polycrystalline fibers originate from centers of calcification and form fanlike fascicles. Upon these fascicles, acicular crystals grow and extend to form the visible fasciculi at the skeletal surface. Deposition of aragonitic fusiform crystals in both G. fascicularis and A. formosa occurs without diurnal rhythm. Nucleation of fusiform crystals appears to be independent of centers of calcification and may occur by secondary nucleation. Formation of semi-solid masses by fusiform crystals suggests that the crystals may play a structural role in septal extension. Lamellar crystals, which have not been reported as a component of scleractinian coral skeletons before, possess distinct layers of polyhedral plates, although these layers also do not appear to be associated with daily growth increments. The relationship of lamellar crystals to other components of the scleractinian coral skeleton and their involvement in skeletal growth is unknown.  相似文献   

4.
Middle Devonian heliolitids and favositids from Central Bohemia, belonging to Heliolites 'intermedius' LeMaitre and Favosites goldfussi Orbigny , incorporated ostracode shells within their living corallite structures. The ostracode shells were sealed in by skeletal tissue that was septal in origin (Heliolites) or they were roofed over by tabulae (Favosites). The foreign shell was near the axis of the polyp when trapped within the coral skeleton. Only ostracodes, not other rounded shells or sedimentary particles, were trapped in this way. Approximately one in 30 favositid corallites and one in 70 heliolitid corallites display this peculiar condition, where the ostracode shells seem to have been swallowed by the polyps. A probable scenario involves the injury of the mouth area and the trapping of the ostracodes. A high probability that the basal part of the polyp experienced a controlled penetration is the most striking part of the process. □ Favositids, heliolitids, ostracodes, coral growth violence, behavior, Middle Devonian, Bohemia.  相似文献   

5.
Small portions of coral cores were analyzed using a high-resolution laser ablation inductively coupled plasma mass spectrometer (LA ICP-MS) to determine the geochemical signatures within and among specific skeletal structures in the large framework coral, Montastraea faveolata. Vertical transects were sampled along three parallel skeletal structures: endothecal (septal flank), corallite wall, and exothecal (costal flank) areas. The results demonstrate that trace element levels varied among the three structures. Magnesium (Mg) varied among adjacent structures and was most abundant within the exothecal portion of the skeleton. Scanning electron microscopy (SEM) revealed the presence of hexagonal crystals forming thick discs, pairs or doublets of individual crystals, and rosettes in several samples. High Mg within these crystals was confirmed with energy dispersive spectroscopy (EDS), infrared spectrometry, and LA ICP-MS. The chemical composition is consistent with the mineral brucite [Mg(OH2)]. These crystals are located exclusively in the exothecal area of the skeleton, are often associated with green endolithic algae, and are commonly associated with increased Mg levels found in the adjacent corallite walls. Although scattered throughout the exothecal, the brucite crystals are concentrated within green bands where levels of Mg increase substantially relative to other portions of the skeleton. The presence and locations of high-Mg crystals may explain the fine-scale fluctuations in Mg data researchers have been questioning for years.  相似文献   

6.
Using in situ (12 h) pulse-labeling of scleractinian coral aragonitic skeleton with stable 86Sr isotope, the diel pattern of skeletal extension was investigated in the massive Porites lobata species, grown at 5 m depth in the Gulf of Eilat. Several microstructural aspects of coral biomineralization were elucidated, among which the most significant is simultaneous extension of the two basic microstructural components Rapid Accretion Deposits (RAD; also called Centers of Calcification) and Thickening Deposits (TD; also called fibers), both at night and during daytime. Increased thickness of the 86Sr-labeled growth-front in the RADs compared to the adjacent TDs revealed that in this species RADs extend on average twice as fast as TDs. At the level of the individual corallite, skeletal extension is spatially highly heterogeneous, with sporadic slowing or cessation depending on growth directions and skeletal structure morphology. Daytime photosynthesis by symbiotic dinoflagellates is widely acknowledged to substantially increase calcification rates at the colony and the corallite level in reef-building corals. However, in our study, the average night-time extension rate (visualized in three successive 12 h pulses) was similar to the average daytime extension (visualized in the initial 12 h pulse), in all growth directions and skeletal structures. This research provides a platform for further investigations into the temporal calibration of coral skeletal extension via cyclic growth increment deposition, which is a hallmark of coral biomineralization.  相似文献   

7.
REEF CORALS FROM THE LOWER CAMBRIAN OF THE FLINDERS RANGES, SOUTH AUSTRALIA   总被引:1,自引:0,他引:1  
Abstract:  The Early Cambrian tabulate-like corals Flindersipora cancelli sp. nov. and Blinmanipora hawkerensis gen. et sp. nov. occur together with Flindersipora bowmani Lafuste, Moorowipora chamberensis Fuller and Jenkins, and Arrowipora fromensis Fuller and Jenkins in the Moorowie Formation of the eastern Flinders Ranges, South Australia. Some of the corals occur in growth position in large allochthonous clasts of calcimicrobe-archaeocyathan boundstones considered to have slid as talus from the frontal slope of a zoned reef complex into relatively deep water. Flindersipora cancelli has some morphological characteristics in common with F. bowmani, but also has skeletal structures that differ; these include generally horizontal tabulae that are commonly evenly spaced and larger corallites. The skeletal structures of Flindersipora and Moorowipora have some characteristics in common; however, Blinmanipora hawkerensis with its randomly orientated tabulae and sparse septa is unlike any other Moorowie coral. Flindersipora , Arrowipora and Moorowipora show similarities to Yaworipora khalfinae Zhuravlev from the upper Botomian of the Altai-Sayan Region of Siberia. Recent Russian opinion places corals showing the general characteristics of those described herein within the single order Tabulaconida Scrutton, which resembles the later Tabulata sensu stricto , but the similarities between these divisions may well be iterative. Statistical analysis of Flindersipora bowmani and F. cancelli based on corallite diameter supports the fact that these two taxa are separate species, while the analysis of the four Moorowie genera, support their assignment as separate taxa.  相似文献   

8.
A new shallow water scleractinian coral species, Echinophyllia tarae sp. n., is described from the Gambier Islands, French Polynesia. It is characterized by an encrusting corallum, a few large and highly variable corallites with protruding walls, and distinctive costosepta. This coral was observed in muddy environments where several colonies showed partial mortality and re-growth. The new species has morphological affinities with both Echinophyllia echinata and with Echinomorpha nishihirai, from which it can be distinguished on the basis of the diameter and the protrusion of the largest corallite, the thickness of the septa, and the development of the size of the crown of paliform lobes.  相似文献   

9.
The spatial heterogeneity of photosynthesis and calcification of single polyps of the coral Galaxea fascicularis was investigated. Photosynthesis was investigated with oxygen microsensors. The highest rates of gross photosynthesis (Pg) were found on the tissue covering the septa, the tentacles, and the tissues surrounding the mouth opening of the polyp. Lower rates were found on the tissues of the wall and the coenosarc. Calcification was investigated by radioactive tracers. The incorporation pattern of 45Ca and 14C in the corallites was imaged with use of a Micro-Imager. The -images obtained showed that the incorporation of the radioactive tracers coincided with the Pg distribution pattern with the highest incorporation rates found in the corallite septa. Thus, the high growth rate of the septa is supported by the high rates of Pg by the symbiont in the adjacent tissues. The total incorporation rates were higher in light than in dark, however, the distribution pattern of the radioisotope incorporation was not affected by illumination. This further emphasizes the close relation between calcification and photosynthesis.  相似文献   

10.
The skeleton morphology of the azooxanthellate cold-water coral Lophelia pertusa can be strongly influenced by invasive boring sponges that infest corallites in the still living part of the colony. Atypically swollen corallites of live Lophelia pertusa from the Galway Mound (Belgica Carbonate Mound Province, Porcupine Seabight, NE Atlantic), heavily excavated by boring organisms, have been examined with a wide range of non-destructive and destructive methods: micro-computed tomography, macro- and microscopic observations of the outer coral skeleton, longitudinal and transversal thin sections and SEM analyses of coral skeleton casts. As a result, three excavating sponge species have been distinguished within the coral skeleton: Alectona millari, Spiroxya heteroclita and Aka infesta. Furthermore, four main coral/sponge growth stages have been recognised: (1) cylindrical juvenile corallite/no sponge cavities; (2) flared juvenile corallite/linear sponge cavities (if present); (3) slightly swollen adult corallites/chambered oval sponge cavities; (4) very swollen adult corallites/widespread cavities. The inferred correlation between corallite morphology and boring sponge infestation has been detected in micro-computed tomography (micro-CT) images and confirmed in sponge trace casts and peculiar features of coral skeleton microstructure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

11.
Marine sessile benthic organisms living on hard substrates have evolved a variety of attachment strategies. Rhizotrochus (Scleractinia, Flabellidae) is a representative azooxanthellate solitary scleractinian coral with a wide geographical distribution and unique attachment structures; it firmly attaches to hard substrates using numerous tube‐like rootlets, which are extended from a corallum wall, whereas most sessile corals are attached by stereome‐reinforced structures at their corallite bases. Detailed morphological and constructional traits of the rootlets themselves, along with their evolutionary significance, have not yet been fully resolved. Growth and developmental processes of spines in Truncatoflabellum and rootlets in Rhizotrochus suggest that these structures are homologous, as they both develop from the growth edges of walls and are formed by transformation of wall structures and their skeletal microstructures possess similar characteristics, such as patterns of rapid accretion and thickening deposits. Taking molecular phylogeny and fossil records of flabellids into consideration, Rhizotrochus evolved from a common free‐living ancestor and invaded hard‐substrate habitats by exploiting rootlets of spines origin, which were adaptive for soft‐substrate environments.  相似文献   

12.
The morphological and molecular studies provide greater taxonomic resolution for the scleractinian coral identification. The Euphylliidae corals are among the scleractinian family for which their corallite and polyp morphologies have been examined for species identification. However, knowledge on the molecular study for coral identification in Malaysia is very limited. Therefore, this study aimed to examine the morphological structures and phylogenetic analyses for six Euphylliidae coral species using the mitochondrial gene of cytochrome oxidase subunit I (COI). The results showed that the Euphylliidae corals are present under both “complex” and “robust” coral clades as supported by many researchers. The result also revealed that the species phylogeny of Euphylliidae corals is in concordances with its morphological structures of corallites. It can be concluded the combination between morphological structures and phylogenetic analyses provide more accurate identification than relying on morphological study alone. Hence, it provides a future direction for the scleractinian research progress in species identification.  相似文献   

13.
Skeletal banding has been found in the deep-water scleractinian coral Desmophyllum cristagalli , an important animal in studies of climate change. This banding pattern sheds light on skeletogenesis and suggests methods by which the record of climate change contained within the coral skeletons may be interpreted. A central wall built of trabeculae forms the interior of the septa and rings the theca. Lamellae form a sheath over the trabecular frame, showing continuity from thecal edge to septum. Skeletal bands are added by the tissue layer, which overlaps and seals the internal coral and upper portion of the outer theca. Truncated inner bands on the outer theca indicate a pattern of skeletal deposition and dissolution dependent on the presence or absence of the live tissue layer. A long-term record will be difficult to collect from D. cristagalli since lamellae are less than 10 μm thick and band position is unpredictable. Density banding in shallow-water coral skeletons has long been recognized as a valuable paleo-oceanographic tool, and deep-water corals are now being used to reconstruct deep-ocean environments. Pattern of skeletal growth must be carefully considered if deep-water corals are to be used as proxy climate recorders.  相似文献   

14.
The ontogenetic development of two Recent scleractinian corals, Golaxea fascicularis (Linnaeus) and Acrhelia horrescens (Dana), has been studied in serial thin sections. The origin of the septotheca (a collective term including both eutheca and pseudotheca) is reconsidered. The eutheca is found to be a basic skeletal structure of corals and of primary origin, formed directly from the basal plate, not by the thickening of septa. The eutheca prepares the way for the formation of metasepta. The ontogenetic growth of the metasepta is illustrated. The pseudotheca is formed by fusion of neighbouring septa and is entirely of secondary origin. Its development is occasional. The essential mural structure of oculinid corals with pseudothecal walls is euthecal.  相似文献   

15.
The objective of the present article is to document the first stratigraphic occurrence of the colonial oculinid Madrepora, known from the modern seas as an azooxanthellate taxon that contributes to the formation of deep-water coral reefs. The Upper Cretaceous specimens of Madrepora sp. reported herein from Poland were recovered from Upper Maastrichtian (Nasiłów and Bochotnica localities) and Lower Maastrichtian (Bliżów locality) siliceous limestones. The corals are preserved as imprints of the branch fragments and molds of the calices. Despite their moldic preservation, the coral remains exhibit key generic features of the genus Madrepora; including (1) sympodial colony growth form with calices arranged in opposite and alternating rows in one plane of the branch, and (2) imprints of the granular coenosteum texture, occasionally showing peculiar reticulate patterns. Some features of the Cretaceous Madrepora sp., such as the reticulate coenosteum texture, the range of the corallite diameter (2.8–4 mm), and the arrangement of the septa in three regular cycles resemble the skeletal features of the modern, typically constructional, species M. oculata (type species). The lack of any evidence of coral buildups and related debris in the whole Upper Cretaceous/Paleogene sequences from Poland and the sparse occurrence of colony fragments, suggests that the Cretaceous Madrepora sp. formed small, isolated colonies.  相似文献   

16.
Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators—none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates.  相似文献   

17.
Large colonies of rugose coral Scruttonia kunthi occurring in the upper Famennian of Sudetes (southern Poland) reveal distinct growth banding in their skeletons. They were investigated for internal structural characteristics and stable isotopic composition. The skeletal tissue consists of alternating light and dark bands which differ in thickness, density and morphology of structural elements, and in occurrence of corallite contraction and rejuvenescense. Darker parts with densely arranged thick skeletal elements are thin in comparison to lighter parts. In addition, they include frequently offsets and contraction of corallites. A couplet of dense and less dense bands is interpreted to represent most probably an annual cycle. The calculated growth rate for Scruttonia kunthi varied from 6 mm/yr to 12 mm/yr. Growth-band formation was influenced environmentally. Oxygen isotopic data provide an evidence that high-density bands were formed in the season of higher environmental stress, with relatively warmer temperatures and higher sedimentation rates. Carbon isotopic signatures are very uniform, and thus enigmatic. They indicate that at least growth rate of the skeleton and seawater temperature had no influence on the coral δ13C.  相似文献   

18.
Identification of fossil corals is often limited due to poor preservation of external skeleton morphology, especially in the genus Acropora which is widespread across the Indo‐Pacific. Based on skeleton characteristics from thin section, we here develop a link between the internal skeleton structure and external morphology. Ten characteristics were summarized to distinguish Acropora and five related genera, including the type and differentiation of corallites, the skeleton nature of corallites (septa, columellae, dissepiments, wall), and calcification centers within septa. Acropora is distinctive for its dimorphic corallites: axial and radial. Isopora is similar to Acropora but possess more than a single axial corallites. Montipora and Astreopora (family Acroporidae) have monomorphic corallites and a synapticular ring wall, with clustered calcification center in the former and medial lines in the latter. Pocillopora and Porties are classified by distinctive dissepiments, columellae and septa. These microstructural skeleton characteristics were effective in the genus identification of fossil corals from drilled cores in the South China Sea. Eighteen detailed characteristics (ten of axial corallites, four of radial corallites, and four of coenosteum) were used in the Acropora species classification. The axial corallites size and structure (including corallite diameter, synapticular rings, and septa), the septa of radial corallites, and the arrangement of coenosteum were critical indicators for species identification. This identification guide can help paleoenvironmental and paleoecological analyses and modern coral reef conservation and restoration.  相似文献   

19.
Environment-induced i.e., phenotypically plastic, changes in morphology, are potentially an important life-history component of sessile corals. Previous reciprocal transplant experiments have demonstrated depth-related responses in various coral species, but the potential adaptive significance is rarely investigated. To test for small-scale morphological plasticity in the massive coral Goniastrea pectinata Ehrenberg 1834, fragments from five colonies were reciprocally transplanted between two depths at Raffles Lighthouse (Pulau Satumu), Singapore. After 163 days, all fragments were collected, cleared of tissue, and examined. Reaction norms and multivariate analysis of variance describe light-induced changes in corallite architecture and genotype × environment interactions. In fragments transplanted to the shallow station, calices were deeper, and septa were shorter than in fragments transplanted to the deep station. To explore the functional significance of this plasticity, a two-dimensional model of corallite shape was constructed. The induced calice morphology of the shallow-water transplants was efficient at shading, possibly to protect tissue from excess radiation, whereas the calice morphology found in the deep-water transplants was more efficient at capturing light when irradiance was low.  相似文献   

20.
Intraspecific morphological variations of a Pleistocene solitary scleractinian coral, Cylindrophyllia orientatis (Yabe & Eguchi), have been examined based on 792 specimens. The specimens are discoidal to short cylindrical in shape, with no significant change in their diameter during skeletal growth. Septal arrangements of the coralla are observed on upper and basal surfaces. Septal numbers do not change through the ontogeny of each corallum, even when the last cycle of septa is incomplete. Septal arrangements and numbers are controlled by intrinsic genetic factors. Heights of the coralla are controlled by environmental factors where they lived If growth rates are presumed to be constant, heights can be regarded as indicating age of specimens. Assuming that this is the case, the survivorship curve shows that this fossil population had a constant death rate. Two varieties exist in this population: one has 20–28 septa, the other 30–48 septa, showing a dimorphic feature. Scleractinian coral, intraspecific variation, population, septa, species problem ,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号