首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
Olfactory ensheathing cells (OECs) are a type of glial cells with morphological plasticity in the olfactory system. Cultured OECs display the process-bearing and flattened shape. Our previous studies have shown that the frontal application of Slit-2 gradient induced the collapse of leading front, and reversed the soma translocation of process-bearing OECs. However, the migratory properties of flattened OECs upon Slit-2 gradient remain elusive. Here, we found that Slit-2 gradient induced the collapse of their plasma membrane, and inhibited migration of flattened OECs. Upon to Slit-2 gradient, the leading front of flattened type 1 OECs firstly showed collapse and retraction, then gradually re-grew a new lamellipodia, finally, showed collapse again (this phenomenon was called as adaptation), while flattened type 2 OECs only showed collapse of plasma membrane. These different migratory responses upon Slit-2 stimulation were possibly due to their different sub-cellular distribution of Robo receptor. Furthermore, F-actin at the peripheral region of leading front was more sensitive to the Slit-2 stimulation than microtubules and the loss of F-actin might be implicated in initiating the collapse of flattened OECs. Finally, the adaptation of flattened type 1 OECs induced by Slit-2 was independent on protein synthesis. Taken together, these results demonstrate that morphological phenotypes of OECs display different migratory properties upon Slit-2 and an unexpected finding that the protein synthesis-independent adaptation in OECs induced by Slit-2.  相似文献   

2.
When cultured on Matrigel, liver precursor epithelium WB-F344 cells could be induced to differentiate into biliary cells in which RhoA expression was upregulated. To further investigate the role of RhoA in WB cell differentiation initiated by Matrigel treatment, we constructed constitutively active RhoA-expressing vectors and stably transfected them into WB-F344 cells. Accompanying upregulation of biliary lineage markers and morphological changes, cells with ectopically active RhoA expression were found to form bile-duct-like structures even without Matrigel treatment. Besides, ROCK inhibitor Y27632 treatment eliminated luminal morphogenesis. F-actin cytoplasmic staining further verified that the RhoA–ROCK signal pathway was involved in differentiation of WB cells into the biliary lineage. In conclusion, our results suggested that the RhoA–ROCK–stress fibre system plays an obligatory role in Matrigel-induced WB-F344 cell luminal morphogenesis and further differentiation.  相似文献   

3.
Wang Y  Huang ZH 《生理学报》2011,63(1):31-38
嗅鞘细胞是一类兼有星形胶质细胞和雪旺细胞特性的胶质细胞。培养的嗅鞘细胞存在两种能相互转化的形态亚型,然而转化的分子机制并不清楚。本研究旨在建立一种研究离体培养嗅鞘细胞形态转化的方法,基于该方法研究其相互转化的机制。采用原代培养大鼠嗅鞘细胞和免疫细胞化学技术,观察在有、无血清培养或给予双丁酰-环核苷酸(dB-cAMP)药物条件下嗅鞘细胞形态,并统计雪旺样和星形样嗅鞘细胞亚型的比例。结果显示:(1)在无血清培养条件下,(95.2±3.7)%嗅鞘细胞呈雪旺样形态,(4.8±3.7)%呈星形样形态;而在10%血清培养条件下,(42.5±10.4)%嗅鞘细胞呈雪旺样形态,(57.5±10.4)%呈星形样形态,随后换回无血清条件下培养24h,(94.8±5.0)%嗅鞘细胞呈雪旺样形态,(5.2±5.0)%呈星形样形态。(2)有无血清的培养条件并不影响嗅鞘细胞标记物p-75和S-100的表达。(3)在正常(10%)血清培养情况下,cAMP类似物dB-cAMP抑制F肌动蛋白应力纤维(F-actin stress fibers)和黏着斑(focal adhesion)形成,抑制血清引起的嗅鞘细胞形态变化,雪旺样细胞比例增加,并...  相似文献   

4.
Astrocytes in the CNS undergo morphological changes and start to proliferate after breakdown of the blood–brain barrier. In culture, proliferating astrocytes have a flat, polygonal shape. When treated with cAMP-raising agents, astrocytes adopt a stellate, process-bearing morphology resembling theirin vivoappearance. Stellation is accompanied by loss of actin stress fibers and focal adhesions. Lysophosphatidic acid (LPA), a blood-borne mitogen that signals through its cognate G protein-coupled receptor, stimulates DNA synthesis in astrocytes and causes rapid reversal of cAMP-induced stellation. LPA reversal of stellation is initiated by f-actin reassembly and tyrosine phosphorylation of focal adhesion proteins such as paxillin. Botulinum C3 toxin, which inactivates the Rho GTPase, mimics cAMP-raising agents in inducing stellation, f-actin disassembly, paxillin dephosphorylation, and growth arrest. However, unlike cAMP-induced stellation, C3-induced stellation cannot be reversed by LPA. Conversely, astrocytes expressing activated RhoA fail to undergo cAMP-induced stellation. Thus, RhoA controls astrocyte morphology in that active RhoA directs LPA reversal of stellation, while inactivation of RhoA is sufficient to induce stellation.  相似文献   

5.
1. Maple syrup urine disease (MSUD) is an inherited metabolic disorder predominantly characterized by neurological dysfunction and cerebral atrophy whose patophysiology is poorly known. 2. We investigated here whether the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which are the biochemical hallmark of this disorder, could alter astrocyte morphology and cytoskeleton reorganization by exposing cultured astrocytes from cerebral cortex of neonatal rats to various concentrations of the amino acids. A change of cell morphology from the usual polygonal to the appearance of fusiform or process-bearing cells was caused by the BCAA. Cell death was also observed when astrocytes were incubated in the presence of BCAA for longer periods. 3. Val-treated astrocytes presented the most dramatic morphological alterations. Immunocytochemistry with anti-actin and anti-GFAP antibodies revealed that all BCAA induced reorganization of actin and GFAP cytoskeleton. In addition, lysophosphatidic acid, an activator of RhoA GTPase pathway, was able to totally prevent the morphological alterations and cytoskeletal reorganization induced by Val, indicating that the RhoA signaling pathway was involved in these effects. 4. Furthermore, creatine attenuated the morphological alterations provoked by the BCAA, the protection being more pronounced for Val, suggesting that impairment of energy homeostasis is partially involved in BCAA cytotoxic action. The data indicate that the BCAA accumulating in MSUD are toxic to astrocyte cells, a fact that may be related to the pathogenesis of the neurological dysfunction of MSUD patients.  相似文献   

6.
In the primary olfactory pathway, olfactory ensheathing cells (OECs) extend processes to envelop bundles of olfactory axons as they course towards their termination in the olfactory bulb. The expression of growth-promoting adhesion and extracellular matrix molecules by OECs, and their spatially close association with olfactory axons are consistent with OECs being involved in promoting and guiding olfactory axon growth. Because of this, OECs have been employed as a possible tool for inducing axonal regeneration in the injured adult CNS, resulting in significant functional recovery in some animal models and promising outcomes from early clinical applications. However, fundamental aspects of OEC biology remain unclear. This brief review discusses some of the experimental data that have resulted in conflicting views with regard to the identity of OECs. We present here recent findings which support the notion of OECs as a single but malleable phenotype which demonstrate extensive morphological and functional plasticity depending on the environmental stimuli. The review includes a discussion of the normal functional role of OECs in the developing primary olfactory pathway as well as their interaction with regenerating axons and reactive astrocytes in the novel environment of the injured CNS. The use of OECs to induce repair in the injured nervous system reflects the functional plasticity of these cells. Finally, we will explore the possibility that recent microarray data could point to OECs assuming an innate immune function or playing a role in modulating neuroinflammation.  相似文献   

7.
Previous studies have shown that serine proteases and Rho-associated kinase contribute to carbon ion radiation-enhanced invasion of the human pancreatic cancer cell line PANC-1. The results presented here show that nitric oxide synthase (NOS) also plays a critical role in this process. Irradiation of PANC-1 cells promoted invasion and production of nitric oxide (NO), which activated the PI3K–AKT signaling pathway, while independently activating RhoA. Inhibition of PI3K, Rho-associated kinase, and serine protease alone or in conjunction with NOS suppressed the radiation-enhanced invasion of PANC-1 cells, suggesting that they could serve as possible targets for the management of tumor metastasis.  相似文献   

8.
小G蛋白RhoA是细胞内信号转导的重要成分,参与对细胞的多种功能活动的调控。溶血磷脂酸(lysophosphatidic acid,LPA)与多种细胞的G蛋白偶连受体结合而发挥作用,除刺激细胞增殖外,还通过活化RhoA,诱导细胞骨架改变。cAMP是经典的第二信使,其下游激酶PKA可抑制RhoA活性,因此,cAMP在许多细胞活动中对RhoA有拮抗作用。  相似文献   

9.
Cultured rat ovarian granulosa cells undergo a dramatic morphological change when exposed to follicle-stimulating hormone (FSH). Exposure to FSH causes the flattened epithelioid granulosa cells to assume a nearly spherical shape while retaining cytoplasmic processes which contact the substrate as well as adjacent cells. This effect of FSH is preceded by a dose-dependent increase in intracellular cAMP, is potentiated by cyclic nucleotide phosphodiesterase inhibitors, and is mimicked by dibutyryl cAMP. Prostaglandins E1 or E2 and cholera enterotoxin also cause the cells to change shape. A subpopulation of the cells responds to luteinizing hormone. These morphological changes, which are blocked by 2,4-dinitrophenol, resemble those produced by treating cultures with cytochalasin B. Electron microscopy shows that the unstimulated, flattened cells contain bundles of microfilaments particularly in the cortical and basal regions. After FSH stimulation, microfilament bundles are not found in the rounded granulosa cell bodies but they are present in the thin cytoplasmic processes. These data suggest that the morphological change results from a cAMP-mediated, energy-dependent mechanism that may involve the alteration of microfilaments in these cells.  相似文献   

10.
小G蛋白RhoA是细胞内信号转导的重要成分,参与对细胞的多种功能活动的调控。溶血磷脂酸(lysophosphatidicacid,LPA)与多种细胞的G蛋白偶连受体结合而发挥作用,除刺激细胞增殖外,还通过活化RhoA,诱导细胞骨架改变。cAMP是经典的第二信使,其下游激酶PKA可抑制RhoA活性,因此,cAMP在许多细胞活动中对RhoA有拮抗作用。本实验采用人前列腺癌细胞株PC-3,以绿色荧光蛋白(GreenFluorescentProtein,GFP)分别和不同RhoA结构(野生型RhoA、RhoA63L和RhoA188A)的cDNA共同转染细胞,在显微镜下(200倍视野)观察记录未转染细胞和转染细胞在LPA和cAMP作用下的形态变化,研究RhoA和cAMP/PKA介导的信号转导在调控癌细胞形态改变中的作用。  相似文献   

11.
The possible involvement of the Rho-p160ROCK (Rho coiled-coil kinase) pathway in the signaling induced by the chemokine Stromal cell-derived factor (SDF)-1alpha has been studied in human PBL. SDF-1alpha induced activation of RhoA, but not that of Rac. RhoA activation was followed by p160ROCK activation mediated by RhoA, which led to myosin light chain (MLC) phosphorylation, which was dependent on RhoA and p160ROCK activities. The kinetics of MLC activation was similar to that of RhoA and p160ROCK. The role of this cascade in overall cell morphology and functional responses to the chemokine was examined employing different chemical inhibitors. Inhibition of either RhoA or p160ROCK did not block SDF-1alpha-induced short-term actin polymerization, but induced the formation of long spikes arising from the cell body, which were found to be microtubule based. This morphological change was associated with an increase in microtubule instability, which argues for an active microtubule polymerization in the formation of these spikes. Inhibition of the Rho-p160ROCK-MLC kinase signaling cascade at different steps blocked lymphocyte migration and the chemotaxis induced by SDF-1alpha. Our results indicate that the Rho-p160ROCK axis plays a pivotal role in the control of the cell shape as a step before lymphocyte migration toward a chemotactic gradient.  相似文献   

12.
RhoA plays a pivotal role in regulating cell shape and movement. Protein kinase A (PKA) inhibits RhoA signaling and thereby induces a characteristic morphological change, cell rounding. This has been considered to result from cAMP-induced phosphorylation of RhoA at Ser-188, which induces a stable RhoA-GTP-RhoGDIα complex and sequesters RhoA to the cytosol. However, few groups have shown RhoA phosphorylation in intact cells. Here we show that phosphorylation of RhoGDIα but not RhoA plays an essential role in the PKA-induced inhibition of RhoA signaling and in the morphological changes using cardiac fibroblasts. The knockdown of RhoGDIα by siRNA blocks cAMP-induced cell rounding, which is recovered by RhoGDIα-WT expression but not when a RhoGDIα-S174A mutant is expressed. PKA phosphorylates RhoGDIα at Ser-174 and the phosphorylation of RhoGDIα is likely to induce the formation of a active RhoA-RhoGDIα complex. Our present results thus reveal a principal molecular mechanism underlying Gs/cAMP-induced cross-talk with Gq/G13/RhoA signaling.  相似文献   

13.

The structural plasticity of dendritic spines plays a critical role in NMDA-induced long-term potentiation (LTP) in the brain. The small GTPases RhoA and Ras are considered key regulators of spine morphology and enlargement. However, the regulatory interaction between RhoA and Ras underlying NMDA-induced spine enlargement is largely unknown. In this study, we found that Rho-kinase/ROCK, an effector of RhoA, phosphorylated SynGAP1 (a synaptic Ras-GTPase activating protein) at Ser842 and increased its interaction with 14-3-3ζ, thereby activating Ras-ERK signaling in a reconstitution system in HeLa cells. We also found that the stimulation of NMDA receptor by glycine treatment for LTP induction stimulated SynGAP1 phosphorylation, Ras-ERK activation, spine enlargement and SynGAP1 delocalization from the spines in striatal neurons, and these effects were prevented by Rho-kinase inhibition. Rho-kinase-mediated phosphorylation of SynGAP1 appeared to increase its dissociation from PSD95, a postsynaptic scaffolding protein located at postsynaptic density, by forming a complex with 14-3-3ζ. These results suggest that Rho-kinase phosphorylates SynGAP1 at Ser842, thereby activating the Ras-ERK pathway for NMDA-induced morphological changes in dendritic spines.

  相似文献   

14.
The purpose of the present study was to evaluate the effects of EtOH on RhoA, actin cytoskeleton, catenin p120 and E-cadherin and their interactions in CCK-stimulated rat pancreatic acini. In isolated rat pancreatic acinar cells, CCK stimulation enhanced protein expression and association of RhoA, Gα13, Vav-2, catenin p120 and E-cadherin. CCK induced translocation and activation of RhoA and actin-filamentous assembly and disassembly. RhoA was diffusely localized throughout the acinar cell in the resting state and redistributed to the apical site in response to submaximal CCK stimulation and to a lesser extent in response to supramaximal CCK stimulation. Ethanol and subsequent submaximal CCK stimulation mimicked the effect of supramaximal CCK stimulation in terms of amylase secretion and morphologic effects. However, inhibition of RhoA translocation and activation were observed only with ethanol pretreatment. Ethanol followed by supramaximal CCK stimulation disrupted the well-defined localization of catenin p120 and E-cadherin around the lateral plasma membrane. These data suggest that ethanol impaired the assembly and disassembly of actin cytoskeleton and impaired cell–cell adhesion via the RhoA signaling pathways, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini.  相似文献   

15.
To investigate the role of RhoA on the intracellular membrane dynamics of lysosomes in rat hepatoma cells (MM1), we analyzed the localization of lysosomal aspartic proteinase cathepsin D by confocal immunofluorescence microscopy in the dominant active RhoA-transfected cells. Here we show that the transfection of the dominant active form of human small guanosine triphosphatase (GTPase) RhoA in MMI cells, a highly invasive cell line, causes the redistribution and spreading of small punctate structures stained for cathepsin D throughout the cytoplasm. We found that the microtubule organization was markedly different in the two cell lines: uniformly developed and polymerized microtubule filaments were seen in the mock transfectants; however, the dynamic organization of microtubules was less pronounced in the active RhoA transfectants. Furthermore, we found for the first time that a selective inhibitor of Rho-associated kinase (p160ROCK), Y-27632, impeded the subcellular spreading of cathepsin D staining and promoted reclustering of cathepsin D toward the perinuclear region in the active RhoA-transfected cells. To our knowledge, this is the first indication that the RhoA/ROCK-mediated signaling pathway is involved in the intracellular membrane dynamics of lysosomes by regulating the cytoskeletal microtubule organization as well as the actin cytoskeletons.  相似文献   

16.
The most prevalent cardiovascular diseases arise from alterations in vascular smooth muscle cell (VSMC) morphology and function. Tetraspanin CD9 has been previously implicated in regulating vascular pathologies; however, insight into how CD9 may regulate adverse VSMC phenotypes has not been provided. We utilized a human model of aortic smooth muscle cells to understand the consequences of CD9 deficiency on VSMC phenotypes. Upon knocking down CD9, the cells developed an abnormally small and rounded morphology. We determined that this morphological change was due to a lack of typical parallel actin arrangement. We also found similar total RhoA but decreased GTP-bound (active) RhoA levels in CD9 deficient cells. As a result, cells lacking a full complement of CD9 were less contractile than their control treated counterparts. Upon restoration of RhoA activity in the CD9 deficient cells, the phenotype was reversed and cell contraction was restored. Conversely, inhibition of RhoA activity in the control cells mimicked the CD9-deficient cell phenotype. Thus, alteration in CD9 expression was sufficient to profoundly disrupt cellular actin arrangement and endogenous cell contraction by interfering with RhoA signaling. This study provides insight into how CD9 may regulate previously described vascular smooth muscle cell pathophysiology.  相似文献   

17.
Is it possible to localize a memory trace to a subset of cells in the brain? If so, it should be possible to show: first, that neuronal plasticity occurs in these cells. Second, that neuronal plasticity in these cells is sufficient for memory. Third, that neuronal plasticity in these cells is necessary for memory. Fourth, that memory is abolished if these cells cannot provide output during testing. And fifth, that memory is abolished if these cells cannot receive input during training. With regard to olfactory learning in flies, we argue that the notion of the olfactory memory trace being localized to the Kenyon cells of the mushroom bodies is a reasonable working hypothesis.  相似文献   

18.
Receptor agonists that increase cyclic AMP levels in cultured astroglia have been shown to increase 32P-labeling of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin in these cells. Experiments were designed to determine if the increase in 32P-labeling resulted from either an increase in the turnover or net number of phosphates associated with the intermediate filament proteins and if the phosphorylation of these proteins causally affected astroglial morphology. Time course experiments indicated that 6-8 h were required to reach steady-state 32P-labeling of both GFAP and vimentin. Treatment with forskolin (10 microM) after steady-state 32P-labeling increased GFAP and vimentin phosphorylation fourfold and twofold, respectively, and also induced a morphological change from polygonal to process-bearing cells within 20-30 min of drug addition. Cells incubated in media containing brain extract (30%) for 24 h at 37 degrees C and then 3 h at 23 degrees C underwent changes from polygonal to process-bearing cells with no apparent increase in the phosphorylation of either GFAP or vimentin. Treatment of process-bearing cells (induced by brain extract) or polygonal cells with 10 microM forskolin at 23 degrees C resulted in a three- to fourfold increase in GFAP phosphorylation without significant morphological changes. These results suggest that forskolin stimulation of GFAP and vimentin increases net number of phosphates associated with these intermediate filament proteins and that the resulting increase in phosphorylation can be dissociated from morphological changes.  相似文献   

19.
One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 µM, and often at 50 µM, and it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin (0.5 µM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold, and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies.  相似文献   

20.
Cell shape-dependent control of cell-cycle progression underlies the spatial differentials of growth that drive tissue morphogenesis, yet little is known about how cell distortion impacts the biochemical signaling machinery that is responsible for growth control. Here we show that the Rho family GTPase, RhoA, conveys the "cell shape signal" to the cell-cycle machinery in human capillary endothelial cells. Cells accumulating p27(kip1) and arrested in mid G(1) phase when spreading were inhibited by restricted extracellular matrix adhesion, whereas constitutively active RhoA increased expression of the F-box protein Skp2 required for ubiquitination-dependent degradation of p27(kip1) and restored G(1) progression in these cells. Studies with dominant-negative and constitutively active forms of mDia1, a downstream effector of RhoA, and with a pharmacological inhibitor of ROCK, another RhoA target, revealed that RhoA promoted G(1) progression by altering the balance of activities between these two downstream effectors. These data indicate that signaling proteins such as mDia1 and ROCK, which are thought to be involved primarily in cytoskeletal remodeling, also mediate cell growth regulation by coupling cell shape to the cell-cycle machinery at the level of signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号