首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Vanadate is beneficial to plant growth at low concentration. However, plant exposure to high concentrations of vanadate has been shown to arrest cell growth and lead to cell death. We are interested in understanding the signalling pathways of rice roots in response to vanadate stress. In this study, we demonstrated that vanadate induced rice root cell death and suppressed root growth. In addition, we found that vanadate induced ROS accumulation, increased lipid peroxidation and elicited a remarkable increase of MAPKs and CDPKs activities in rice roots. In contrast, pre-treatment of rice roots with ROS scavenger (sodium benzoate), serine/threonine protein phosphatase inhibitor (endothall), and CDPK antagonist (W7), reduced the vanadate-induced MAPKs activation. Furthermore, the expression of a MAPK gene (OsMPK3) and four tyrosine phosphatase genes (OsDSP3, OsDSP5, OsDSP6, and OsDSP10) were regulated by vanadate in rice roots. Collectively, these results strongly suggest that ROS, protein phosphatase, and CDPK may function in the vanadate-triggered MAPK signalling pathway cause cell death and retarded growth in rice roots.  相似文献   

3.
This study examined the effects of 5-aminolevulinic acid (ALA) application on photosynthesis, activity and gene expression of key antioxidant enzymes, and on proline accumulation in tomato (Lycopersicon esculentum Mill. ‘Hezuo 903’) seedlings under NaCl stress. NaCl stress significantly decreased the net photosynthetic rates and inhibited the activity of photosystem II, whereas exogenous ALA application significantly restored the net photosynthetic rates, quantum yield of electron transport, and energy conversion efficiency of photosystem II of tomato under NaCl stress. Production of superoxide, hydrogen peroxide, and malondialdehyde strongly increased in response to NaCl stress, and these increases were significantly counteracted by ALA. ALA increased the activity of reactive oxygen species (ROS) scavenging antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, and upregulated the expression of SOD, APX, and POD, genes that encode these enzymes in NaCl-treated plants. ALA simultaneously increased proline accumulation in tomato seedlings under NaCl stress by regulating the expression of genes that encode ALA biosynthetic enzymes and that control proline biosynthesis and metabolism, for example, expression of GluRS and GluTR was downregulated, accompanied by a significant increase in the expression of P5CS and decline in the expression of ProDH. ALA provided protection against NaCl stress by increasing photosynthetic capacity, regulating antioxidant enzyme gene expression and proline accumulation, and decreasing ROS accumulation and lipid peroxidation in tomato.  相似文献   

4.
Low-temperature stress was shown to cause a rapid increase in steady-state levels of alcohol dehydrogenase-1 message (Adh1) and protein activity (ADH1) in maize (Zea mays) (B37N, A188) and rice (Oryza sativa) (Taipei 309, Calmochi 101) seedlings. Maize roots and rice shoots and roots from 7-day seedlings shifted to low temperature (10°C) contained as much as 15-fold more Adh1 mRNA and 8-fold more ADH1 protein activity than the corresponding tissues from untreated seedlings. Time-course studies showed that these tissues accumulated Adh1 mRNA and ADH1 activity severalfold within 4- to 8-hour, levels plateaued within 20 to 24 hours, and remained elevated at 4 days of cold treatment. Within 24 hours of returning cold-stressed seedlings to ambient temperature, Adh1 mRNA and ADH1 activity decreased to pretreatment levels. Histochemical staining of maize and rice tissue imprints showed that ADH activity was enhanced along the lengths of cold-stressed maize primary roots and rice roots, and along the stems and leaves of rice shoots. Our observations suggest that short-term cold stress induces Adh1 gene expression in certain plant tissues, which, reminiscient of the anaerobic response, may reflect a fundamental shift in energy metabolism to ensure tissue survival during the stress period.  相似文献   

5.
6.
Rice (Oryza sativa L.) produces a variety of diterpene phytoalexins, such as momilactones, phytocassanes, and oryzalexins. Momilactone B was previously identified as an allelopathic substance exuded from the roots of rice. We identified in this present study momilactone A and phytocassanes A–E in extracts of, and exudates from, the roots of rice seedlings. The concentration of each compound was of the same order of magnitude as that of momilactone B. Expression analyses of the diterpene cyclase genes responsible for the biosynthesis of momilactones and phytocassanes suggest that these phytoalexins found in roots are primarily biosynthesized in those roots. None of phytocassanes B–E exhibited allelopathic activity against dicot seedling growth, whereas momilactone A showed much weaker allelopathic activity than momilactone B. The exudation of diterpene phytoalexins from the roots might be part of a system for defense against root-infecting pathogens.  相似文献   

7.
8.
This work studies the effect of bicarbonate on plant performance and the iron acquisition system of Forner-Alcaide 5 (FA-5) seedlings, a citrus genotype known for its tolerance to calcareous soils. Plants were irrigated for 6 weeks with or without 10 mM NaHCO3. Treatment significantly decreased shoot growth, photosynthetic levels and iron concentration in shoots and roots. o,o-57FeEDDHA experiments indicated that 57Fe uptake by roots was inhibited in treated plants. Moreover, those seedlings accumulated more 57Fe in roots, and enhanced mRNA accumulation of ferric reductase genes FRO1 and FRO2 and FC-R activity in roots. H+-ATPase activity and HA1 gene expression were also increased, while HA2 was not affected. In addition, expression of the iron transporter gene IRT1 was increased, while IRT2 was not significantly affected. Finally, according to PEPC enzymatic activity, PEPC1 gene expression was higher in treated roots. In conclusion, it appears that bicarbonate prevents medium acidification by roots, thus reducing Fe2+ uptake. Accordingly, Fe deficiency enhanced the expression of some genes related with the Fe acquisition system (IRT1, FRO1, FRO2, HA1 and PEPC1) and the activity of the corresponding enzymes, which appear to constitute an adaptive mechanism of FA-5 in these soils.  相似文献   

9.
Hairy root disease is caused by infection of wounded higher plants with Agrobacterium rhizogenes. Transformation of tissues or plants with A. rhizogenes, as well as transformation with rol genes, in addition to hairy roots, may produce alterations in the plant secondary metabolism. H2O2 and other ROS are involved as signals in secondary metabolite production pathways and play a key role in plant defense reactions. In this work the effects of A. rhizogenes rol genes on nicotine content, antioxidant enzymes activity, H2O2 production, the pattern of peroxidase (POX) and superoxide dismutase (SOD) isozymes in hairy roots and regenerated Nicotiana tabacum plants were studied. The rise in SOD and POX activities in the transformed lines TRa and TRb and the resulting regenerated plants and a decreased level of H2O2 in them as compared with the untransformed lines indicates that rol gene expression decreases H2O2 level probably by increasing production of antioxidant enzymes. A decreased H2O2 content in TRc line, in spite of similarity of antioxidant enzyme activity as compared to normal roots, indicates that rol genes activate other mechanisms except SOD and POX enzymes for reducing H2O2.  相似文献   

10.
Drought stress is one of the most adverse conditions for plant growth and productivity. The plant antioxidant system is an important defense mechanism and includes antioxidant enzymes and low-molecular weight antioxidants. Understanding the biochemical and molecular responses to drought is essential for improving plant resistance to water-limited conditions. Previously, we isolated and characterized expressed sequence tags (ESTs) from a full-length enriched cDNA library prepared from fibrous roots of sweetpotato subjected to dehydration stress (Kim et al. in BMB Rep 42:271–276, [5]). In this study, we isolated and characterized 11 sweetpotato antioxidant genes from sweetpotato EST library under various abiotic stress conditions, which included six intracellular CuZn superoxide dismutases (CuZnSOD), ascorbate peroxidase, catalase, glutathione peroxidase (GPX), glutathione-S-transferase, thioredoxin (TRX), and five extracellular peroxidase genes. The expression of almost all the antioxidant genes induced under dehydration treatments occurred in leaves, with the exception of extracellular swPB6, whereas some antioxidant genes showed increased expression levels in the fibrous roots, such as intracellular GPX, TRX, extracellular swPA4, and swPB7 genes. During various abiotic stress treatments in leaves, such as exposure to NaCl, cold, and abscisic acid, several intracellular antioxidant genes were strongly expressed compared with the expression of extracellular antioxidant genes. These results indicated that some intracellular antioxidant genes, especially swAPX1 and CuZnSOD, might be specifically involved in important defense mechanisms against oxidative stress induced by various abiotic stresses including dehydration in sweetpotato plants.  相似文献   

11.
This study elucidates the involvement of auxin with Zn-efficiency (ZE) in Zn-efficient rice var. Pokkali. Pokkali showed no significant decrease in morpho-physiological features, electrolyte leakage and total soluble proteins due to Zn deficiency as compared with Zn-sufficient seedlings. However, auxin inhibitor under Zn deficiency severely affected these characteristics, suggesting that ZE is associated with auxin signaling in rice. Results further revealed significant decreases in the expression of Zn transporter genes (OsIRT1, OsZIP4 and OsZIP1), OsDMAS1 (deoxymugeneic acid synthase) and phytochelatin in roots due to auxin inhibitor. It implies that auxin signaling may trigger Zn uptake, transport and chelation in rice seedlings to withstand Zn-deficiency. Further, significant reduction of major S-metabolites (cysteine, methionine, glutathione) and antioxidant enzymes (superoxide dismutase and glutathione reductase) along with increased H2O2 content, due to auxin inhibitor under Zn deficiency compared with controls. Taken together, these findings reveal that mechanisms associated with ZE in Pokkali are dependent on auxin signaling.  相似文献   

12.
Seedlings of two Indica rice (Oryza sativa L.) cvs. HUR-105 and Vandana, differing in Al-tolerance were used to identify the key mechanisms involved in their differential behaviour towards Al toxicity. Cv. HUR-105 appeared to be Al sensitive by showing significant reduction (p ≤ 0.01) in root/shoot length, fresh weight, dry weight and water content in presence of 421 μM Al3+ in growth medium whereas cv. Vandana appeared to be fairly Al3+ tolerant. A conspicuous and significant reduction in dry weight of root and shoot was observed in Al sensitive cv. HUR-105 with 178 μM Al3+ treatment for 3 days. Al was readily taken up by the roots and transported to shoots in both the rice cultivars. Localization of absorbed Al was always greater in roots than in shoots. Our results of the production of reactive oxygen species (ROS) H2O2 and O2 .? and activities of major antioxidant enzymes such as total superoxide dismutase (SOD), Cu/Zn SOD, Mn SOD, Fe SOD, catalase (CAT) and guaiacol peroxidase revealed Al induced higher oxidative stress, greater production of ROS and lesser capacity to scavenge ROS in cv. HUR-105 than Vandana. With Al treatment, higher oxidative stress was noted in shoots than in roots. Greatly enhanced activities of SOD (especially Fe and Mn SOD) and CAT in Al treated seedlings of cv. Vandana suggest the role of these enzymes in Al tolerance. Furthermore, a marked presence of Fe SOD in roots and shoots of the seedlings of Al tolerant cv. Vandana and its significant (p ≤ 0.01) increase in activity due to Al-treatment, appears to be the unique feature of this cultivar and indicates a vital role of Fe SOD in Al-tolerance in rice.  相似文献   

13.

Background

Glycosyl hydrolase family 1 (GH1) β-glucosidases have been implicated in physiologically important processes in plants, such as response to biotic and abiotic stresses, defense against herbivores, activation of phytohormones, lignification, and cell wall remodeling. Plant GH1 β-glucosidases are encoded by a multigene family, so we predicted the structures of the genes and the properties of their protein products, and characterized their phylogenetic relationship to other plant GH1 members, their expression and the activity of one of them, to begin to decipher their roles in rice.

Results

Forty GH1 genes could be identified in rice databases, including 2 possible endophyte genes, 2 likely pseudogenes, 2 gene fragments, and 34 apparently competent rice glycosidase genes. Phylogenetic analysis revealed that GH1 members with closely related sequences have similar gene structures and are often clustered together on the same chromosome. Most of the genes appear to have been derived from duplications that occurred after the divergence of rice and Arabidopsis thaliana lineages from their common ancestor, and the two plants share only 8 common gene lineages. At least 31 GH1 genes are expressed in a range of organs and stages of rice, based on the cDNA and EST sequences in public databases. The cDNA of the Os4bglu12 gene, which encodes a protein identical at 40 of 44 amino acid residues with the N-terminal sequence of a cell wall-bound enzyme previously purified from germinating rice, was isolated by RT-PCR from rice seedlings. A thioredoxin-Os4bglu12 fusion protein expressed in Escherichia coli efficiently hydrolyzed β-(1,4)-linked oligosaccharides of 3–6 glucose residues and laminaribiose.

Conclusion

Careful analysis of the database sequences produced more reliable rice GH1 gene structure and protein product predictions. Since most of these genes diverged after the divergence of the ancestors of rice and Arabidopsis thaliana, only a few of their functions could be implied from those of GH1 enzymes from Arabidopsis and other dicots. This implies that analysis of GH1 enzymes in monocots is necessary to understand their function in the major grain crops. To begin this analysis, Os4bglu12 β-glucosidase was characterized and found to have high exoglucanase activity, consistent with a role in cell wall metabolism.  相似文献   

14.
Proton (H+) and aluminum (Al3+) toxicities are major factors limiting crop production on acid soils. To study whether salicylic acid (SA) is functional in alleviating protein damage caused by H+ and Al3+ toxicities, an investigation of the antioxidant defense response regulated by SA was carried out on barley (Hordeum vulgare L.) seedlings under H+, Al3+, and combined stresses. It was found that the relative root elongation of seedlings, which grew in the solutions supplemented with SA, was significantly higher than that of seedlings without SA treatment after 24-h treatments with H+, Al3+, and combined stresses. The lesser amount of carbonylated proteins with molecular weights ranging from 14.4 to 97 kD, was accumulated in seedlings treated with SA than that in the seedlings without SA treatment. The higher activities of antioxidant enzymes and lesser content of MDA were observed in seedlings treated with SA compared with the seedlings without SA treatment. Moreover, the nitroblue tetrazolium staining of roots showed that ROS accumulation was decreased by SA treatments. This study suggested that SA could alleviate cell damage caused by H+ and Al3+ toxicities on acid soils by both activating antioxidant defense responses and reducing the contents of carbonylated proteins caused by ROS in barley seedlings.  相似文献   

15.
Plants show various responses to phosphorus (P) deficiency. Root oxidizing capacity enhancement is one of adaptive mechanisms for rice (Oryza sativa L.) to P deficiency. However, it remains unclear how P deficiency enhances the root oxidizing capacity. In this study, rice seedlings were treated in P-deficient nutrient solution for different periods. Variations of reactive oxygen species (ROS), antioxidant enzyme activity, root lignin content, root porosity, root oxygen release, total oxidative substances and root structural changes in rice roots in response to P-sufficient and P-deficient treatments were investigated. Results indicated that P deficiency induced the production of H2O2 and O 2 ·? in roots significantly, which reached their maximum after 1- to 2-day P-deficient treatment. Interestingly, the endogenous total oxidative substances kept stable in rice roots. P deficiency increased the activities of peroxidase and superoxide dismutase by 89.5 and 51.8 % after 4-day P-deficient treatment, respectively. Moreover, one-day P deficiency elevated lignin accumulation. Root porosity of rice seedling under 2-day P-deficient treatment was 19.8 % higher than that under P-sufficient treatment. P deficiency also enhanced the release of both O2 and total oxidative substances after 1- to 4-day P deficiency. In addition, results from electronic microscopy indicated that the thickness of root cell wall tended to increase after 2-day P-deficient treatment. Taken together, our results suggested that P-deficiency-induced enhancement of root oxidizing capacity in rice roots was probably associated with ROS production, antioxidant enzyme activity increment in root tissues, and the release of O2 and oxidative substances from root inside to rhizosphere.  相似文献   

16.
Hexavalent chromium (Cr6 +) is a common pollutant transient metal with high toxicity in the environment. The toxicological effects partly result from oxidative damage due to the production of excessive reactive oxygen species (ROS) in the reductive process of Cr6 +. To explore the influence of ROS induced directly by Cr6 + on the oxidative stress generation and antioxidant system, the full length cDNAs of antioxidant-related genes cat, gpx1 and Cu/Zn-sod were successfully acquired from pengze crucian carp first and analyzed. Furthermore, the mRNA expression of the antioxidant genes encompassing catalase (cat), copper/zinc superoxide dismutase (Cu/Zn-sod) and glutathione peroxidase (gpx1), antioxidant enzyme activities of CAT, SOD, and GPx and total protein content were further studied in the gill, intestine and liver of pengze crucian carp (Carassius auratus var. Pengze) juveniles upon acute exposure to Cr6 + at concentrations of 0.1, 1.0, 10 and 100 mg/L for 4 days. Differential significant changes of the antioxidant enzymes and gene expression were observed in different tissues. The findings contribute to better understanding the antioxidant mechanisms induced by Cr6 + and selecting the organic-specific sensitive biomarkers to monitor the safety of the aquatic ecosystem.  相似文献   

17.
18.
19.
20.
研究了侧柏(Platycladus orientalis)根、枝、叶、果实不同浓度水提取物及枝叶挥发油对油松种子萌发和幼苗生长的他感效应。结果表明:侧柏各器官及挥发油都含有化感物质,均对油松种子萌发及幼苗生长表现出“高抑低促”效应,而且低浓度时的促进作用明显强于高浓度时的抑制作用。与对照相比,在浓度为2 mg·mL-1时,侧柏根水提取物对油松幼苗根长和鲜重的促进能力最强,其根长和鲜重分别比对照提高了79.78%和376.60%;侧柏叶水提取物对油松幼苗苗高促进能力最强,比对照提高了102.41%;侧柏枝水提取物对油松种子发芽的促进能力最强,发芽率比对照提高了65.63%。而在浓度为30 mg·mL-1时,除了侧柏根和枝水提取物对油松种子萌发(87.50%)和鲜重(85.11%)表现出明显的抑制作用外,其它提取物对油松幼苗根长和苗高生长的抑制作用均不明显。侧柏枝叶挥发油对油松种子萌发,幼苗生长均表现为促进作用,特别对油松种子萌发具有显著的促进作用,其促进率达70.37%。说明侧柏和油松混交,可能有利于油松树木生长及生产力的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号