首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Omnivores obtain resources from more than one trophic level, and choose their food based on quantity and quality of these resources. For example, omnivores may switch to feeding on plants when prey are scarce. Larvae of the western flower thrips Frankiniella occidentalis Pergande (Thysanoptera: Thripidae) are an example of omnivores that become predatory when the quality of their host plant is low. Western flower thrips larvae usually feed on leaf tissue and on plant pollen, but may also attack eggs of predatory mites, their natural enemies, and eggs of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), one of their competitors. Here, we present evidence that western flower thrips larvae prey on Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), another competitor for plant tissue. We tested this on two host plant species, cucumber (Cucumis sativa L.), considered a host plant of high quality for western flower thrips, and sweet pepper (Capsicum annuum L.), a relatively poor quality host. We found that western flower thrips killed and fed especially on whitefly crawlers and that the incidence of feeding did not depend on host-plant species. The developmental rate and oviposition rate of western flower thrips was higher on a diet of cucumber leaves with whitefly crawlers than on cucumber leaves without whitefly crawlers, suggesting that thrips do not just kill whiteflies to reduce competition, but utilize whitefly crawlers as food.  相似文献   

2.
Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, are both important polyphagous pests of vegetables and ornamentals in greenhouses. Difficulties in biological control of these pests have prompted a search for new natural enemies. Most recently, the predatory mite Amblyseius swirskii has been commercialised as biological control agent of whiteflies and thrips. However, little is known about the suitability of thrips as prey for A. swirskii. We therefore assessed prey acceptance and life history of A. swirskii when feeding on F. occidentalis and T. tabaci at 25±1°C. Amblyseius swirskii juveniles preyed upon first larval instars of both F. occidentalis and T. tabaci but suffered from high mortality (67 and 78%). Developmental time (egg to adult) of A. swirskii was 7.8 days with either prey species. Adult A. swirskii females readily accepted first larval instars of both thrips species, which were attacked in <20 min on a leaf and <10 min in an artificial cage. Oviposition rates (0.92 and 0.99 eggs/female/day) and offspring sex ratios (63 and 70% females) were similar with F. occidentalis and T. tabaci as prey. Less than one-third of juveniles reaching adulthood and oviposition rates below one egg/female per day resulted in relatively low intrinsic rates of increase (r m) (0.056 and 0.024 per day with F. occidentalis and T. tabaci, respectively). Altogether, our study suggests that the recently reported superiority of A. swirskii to the widely used Neoseiulus cucumeris in suppression of thrips is due to other traits than its population growth capacity with thrips as prey.  相似文献   

3.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   

4.
1. Patterns of mite egg consumption by the phytophagous thrips Frankliniella schultzei Trybom were investigated. Although F. schultzei predation is somewhat similar to that of F. occidentalis (Pergande), the understanding of predation by these two phytophagous thrips was extended, allowing the functional significance of flower thrips’ predatory behaviour to be reinterpreted. 2. Second-instar larvae consumed significantly more eggs than any other life-stage, and the daily intake of eggs by second-instar larvae declined significantly with each successive day of the 4-day duration of instar two. 3. Mite eggs that had had their silken webbing removed were consumed at a significantly greater rate than those with their webbing intact. 4. Frankliniella schultzei immatures developed successfully both on diets containing cotton (Gossypium hirsutum L.) leaf tissue plus mite eggs and on cotton leaf tissue alone. Supplementing a leaf tissue larval diet with mite eggs lowered the developmental time from egg to adult significantly, as well as lowering the percentage mortality. Continuation of the mite egg supplement beyond adult eclosion increased fecundity significantly and extended life span over that achieved on a leaf diet alone. 5. In laboratory choice tests, mite eggs and pollen of Wax Mallow (Malvaviscus arboreus Cav.), the usual host of F. schultzei in Brisbane, were encountered with similar frequencies. Furthermore, the mean proportion of encounters with pollen grains that resulted in consumption of pollen did not differ significantly from the encounter : consumption rate for mite eggs. 6. Frankliniella schultzei, like F. occidentalis, does not seem to be specifically adapted for preying on mite eggs, even though such predation enhances performance and reproductive output of F. schultzei when constrained on cotton leaves. Comparison of performance results with those published for F. schultzei when reared on the floral parts of one of its primary hosts (M. arboreus) (Milne et al., 1996), indicates that mite egg predation does not make up completely for a deficient adult or larval diet.  相似文献   

5.
1. To reduce the risk of being eaten by predators, prey alter their morphology or behaviour. This response can be tuned to the current danger if chemical or other cues associated with predators inform the prey about the risks involved. 2. It is well known that various prey species discriminate between chemical cues from predators that fed on conspecific prey and those that fed on heterospecific prey, and react stronger to the first. It is therefore expected that generalist predators are more successful in capturing a given prey species when they are contaminated with chemical cues from another prey species instead of cues from the same prey species. 3. Here, a generalist predatory mite was studied that feeds on thrips larvae as well as on whitefly eggs and crawlers. Mites were marked with cues (i.e. body fluids) of one of these two prey species and were subsequently offered thrips larva. 4. Predators marked with thrips cues killed significantly fewer thrips than predators marked with whitefly cues, even though the predator's tendency to attack was the same. In addition, more thrips larvae sought refuge in the presence of a predatory mite marked with thrips cues instead of whitefly cues. 5. This suggests that generalist predators may experience improved attack success when switching prey species.  相似文献   

6.
Phytoseiid mites of the genus Phytoseius are natural enemies of tetranychid and eriophyid herbivorous mites mostly found on hairy plants where they feed on prey, as well as on pollen. Nevertheless, the nutritional ecology and the role of these predators in biological pest control are only rarely addressed. In the present study, we evaluated the potential of Phytoseius finitimus to feed and reproduce on three major greenhouse pests, the two-spotted spider mite, the greenhouse whitefly and the western flower thrips. Additionally, we estimated the effect of cattail pollen when provided to the predator alone or in mixed diets with prey. Contrary to thrips larvae, both spider mite larvae and whitefly crawlers sustained the development of P. finitimus. In addition, females consumed more spider mite eggs and larvae, as well as whitefly crawlers than thrips larvae, but laid eggs when feeding on all prey. When provided alone, cattail pollen sustained the development and reproduction of the predator. The addition of pollen in mixed diets with prey reduced prey consumption, though it increased the predator’s egg production. We discuss the implications of our findings for biological pest control.  相似文献   

7.
Attacking prey is not without risk; predators may endure counterattackby the prey. Here, we study the oviposition behaviour of a predatory mite(Iphiseius degenerans) in relation to its prey, thewesternflower thrips (Frankliniella occidentalis). This thrips iscapable of killing the eggs of the predator. Thrips and predatory mites - apartfrom feeding on each other - can also feed and reproduce on a diet of pollen.Because thrips may aggregate at pollen patches, such patches may be risky foroviposition by the predatory mites. We found that, in absence of thrips,predatory mites lay their eggs close to pollen, but further away when thripsarepresent. Predatory mite eggs near pollen were killed more frequently by thripsthan when they were deposited further away. The oviposition behaviour of thepredatory mite was also studied in absence of thrips, but in presence of thealarm pheromone of thrips. This pheromone is normally secreted upon contactwithpredators or competitors. When applied close to the pollen, predatory mitesoviposited significantly further away from it. When the alarm pheromone wasapplied away from the food source, most eggs were found near the pollen. Theseresults indicate that female predatory mites show flexible ovipositionbehaviourin response to the presence of their counterattacking prey.  相似文献   

8.
This study investigated the effect of temperature on the development and overwintering potential of the predatory thrips Franklinothrips vespiformis (Crawford) (Thysanoptera: Aeolothripidae), a biological control agent used against glasshouse pests in continental Europe and Israel. Developmental rates increased linearly with rearing temperatures. It was estimated that 304.9 degree days, above a lower threshold temperature of 11.9 °C, were required for F. vespiformis to complete development from egg to adult eclosion. The effect of low temperatures (–5, 0, and 5 °C) was examined on adult female and larval survival. Subsequent reproductive and developmental attributes of survivors were also investigated. Lethal time experiments indicated that larval stages are more cold tolerant than adult F. vespiformis females. Surviving larvae increased their developmental times to adults with decreasing temperature and increasing exposure periods and second instars were significantly more successful than first instars in reaching adulthood. Surviving adult females decreased their oviposition rate with decreasing temperature and increasing exposure periods, and exposures to low temperatures affected the number of viable eggs produced. The results are discussed in the context of overwintering and establishment potential of F. vespiformis in the UK in the event of introducing the predatory thrips as a biological control agent against glasshouse pests.  相似文献   

9.
The life cycle of the Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), one of the most important glasshouse pests, includes a soil passage composed of three instars that deserve more attention in terms of biocontrol strategies. It has been repeatedly reported that two polyphagous predatory mites, Stratiolaelaps miles (Berlese) and Hypoaspis (Geolaelaps) aculeifer (Canestrini) (Acari: Laelapidae), also prey on these thrips stages, in addition to several other soil inhabiting prey species. However, the potential thrips consumption rates have never been quantified for these predatory mites. Therefore, an arena experiment was carried out to investigate the potential predation rates of the two mites on second instar larvae, prepupae, and pupae of F. occidentalis. In addition, the fecundity on the thrips diet was assessed and compared to oviposition rate on a nematode prey. All thrips instars were accepted as prey by each mite species. Females of H. aculeifer preyed on 3.5 (± 0.5) thrips instars and laid 2.5 (± 0.87) eggs per day, whereas females of S. miles preyed on 1.64 (± 0.3) thrips and laid 0.8 (± 0.53) eggs. Males of both species killed 0.6 (± 0.3) thrips per day. The fitness of the two predatory mites on F. occidentalis as prey and their suitability as biocontrol agents are elucidated. Reasons for reduced thrips control in the soil environment, in contrast to the results obtained in arena assays are discussed.  相似文献   

10.
Generalist predators are often used in biological control programs, although they can be detrimental for pest control through interference with other natural enemies. Here, we assess the effects of generalist natural enemies on the control of two major pest species in sweet pepper: the green peach aphid Myzus persicae (Sulzer) and the western flower thrips Frankliniella occidentalis (Pergande). In greenhouses, two commonly used specialist natural enemies of aphids, the parasitoid Aphidius colemani Viereck and the predatory midge Aphidoletes aphidimyza (Rondani), were released together with either Neoseiulus cucumeris Oudemans, a predator of thrips and a hyperpredator of A. aphidimyza, or Orius majusculus (Reuter), a predator of thrips and aphids and intraguild predator of both specialist natural enemies. The combined use of O. majusculus, predatory midges and parasitoids clearly enhanced the suppression of aphids and consequently decreased the number of honeydew-contaminated fruits. Although intraguild predation by O. majusculus on predatory midges and parasitoids will have affected control of aphids negatively, this was apparently offset by the consumption of aphids by O. majusculus. In contrast, the hyperpredator N. cucumeris does not prey upon aphids, but seemed to release aphids from control by consuming eggs of the midge. Both N. cucumeris and O. majusculus did not affect rates of aphid parasitism by A. colemani. Thrips were also controlled effectively by O. majusculus. A laboratory experiment showed that adult predatory bugs feed on thrips as well as aphids and have no clear preference. Thus, the presence of thrips probably promoted the establishment of the predatory bugs and thereby the control of aphids. Our study shows that intraguild predation, which is potentially negative for biological control, may be more than compensated by positive effects of generalist predators, such as the control of multiple pests, and the establishment of natural enemies prior to pest invasions. Future work on biological control should focus on the impact of species interactions in communities of herbivorous arthropods and their enemies.  相似文献   

11.
Quantitative genetic analysis of the ovariole number of the Australian Hibiscus flower-breeding Drosophila hibisci Bock was conducted on populations from two localities along a latitudinal cline in ovariole number previously observed in the species (Starmer et al., in press). Parental strains, F1, F1r (reciprocal), F2, backcross, and backcross reciprocal generations were used in a line-cross (generation means) analysis. This analysis revealed both additive and epistatic effects as important determinants of variation in ovariole number when larvae were reared at 25°C. Maternal effects and maternal-by-progeny genetic interactions were not significant. These results are comparable to previous studies that document epistatic components as genetic determinants of ovariole number in D. melanogaster. Parallel studies on ovariole number in D. hibisci parental and hybrid generations (F1 and F1r) reared as larvae at three temperatures (18°, 21.5°, and 25°C) showed environmental effects and genotype-by-environment interactions as significant influences on the phenotype. Maternal effects were present when temperature of larval development was considered and significant, nonlinear environmental effects were detected. Field collections of D. hibisci females showed that field conditions result in significant departure of ovariole number from comparable laboratory reared females. The significant epistatic genetic effects, genotype-by-environment interactions, and maternal effects indicate that the genetic architecture of traits, such as ovariole number, may be more complex than often acknowledged and thus may be compatible with Wright's view of a netlike relationship between the genome and complex characters (Wright 1968).  相似文献   

12.

Astigmatid mites can be used as prey for mass rearing of phytoseiid predators, but also as a supplemental food source to support predator populations in crops. Here we evaluated the potential of six species of astigmatid mites (living or frozen) as alternative food for the predatory mite Amblyseius swirskii Athias-Henriot in greenhouse crops. All prey mites tested were suitable for predator oviposition. In general, oviposition was greater when prey mites were reared on dog food with yeast than when they were reared on wheat bran with yeast. Amongst prey items provided as frozen diet, larvae of Thyreophagus entomophagus (Laboulbene), Acarus siro L. and Lepidoglyphus destructor (Schrank) that had been reared on dog food with yeast, resulted in the highest oviposition rates of A. swirskii. T. entomophagus larvae as frozen diet resulted in the shortest preimaginal developmental time of A. swirskii. On chrysanthemum plants, we found that the greatest increase in predator density occurred when living mites of T. entomophagous were used as a food source. This increase was greater than when predators were fed cattail pollen, a commonly used supplemental food. Effects on predators of providing living A. siro and L. destructor, or frozen larvae of T. entomophagous as food, were comparable with provision of pollen. Use of supplemental food in crops can be a risk if it is also consumed by omnivorous pests such as western flower thrips, Frankliniella occidentalis Pergande. However, we showed that both frozen and living mites of T. entomophagous were unsuitable for thrips oviposition. Hence, we believe that provision of prey mite species increases A. swirskii density, supporting biological control of thrips and other pests in greenhouse crops.

  相似文献   

13.
Clerid beetles are common natural enemies of bark beetles, and could potentially be used as biological control agents if they could be reared in sufficient numbers. We developed an artificial diet devoid of insect components for rearing Thanasimus dubius (Fabricius), a clerid that attacks several economically important bark beetles in eastern North America. We reared larvae of this predator using the artificial diet, and then used either natural or factitious prey to feed the adults so produced. Two different methods of presenting the diet were also examined. We then compared the performance of T. dubius reared on the artificial diet with newly-emerged wild individuals collected from the field. Our results suggest that adult predators reared on the diet are near in quality to wild ones, and high R0 values can be obtained. No difference in prey preference was found between wild and diet-reared individuals after five generations in the laboratory. Sufficient numbers of predators could be generated using these techniques to permit limited field trials of augmentative biological control.  相似文献   

14.
Abstract: It is of importance to integrate the biological control of hawthorn spider mite, Tetranychus viennensis, by predatory thrips in commercial orchards in north China. In this study, a leaf disc bioassay was employed to investigate the effects of two insecticides, i.e. abamectin and fenpropathrin, and two fungicides, i.e. mancozeb and carbendazim, on the functional response of an acarophagous thrips, Scolothrips takahashii Priesner, to eggs of the mite at the conditions of 25 ± 1°C, 60 ± 10% relative humidity, and a 16 : 8 h (L : D) photoperiod. Results indicated that the type of functional response in predatory thrips differed depending on the types and doses of the pesticides exposed. Holling‐II type responses were exhibited by all predatory thrips but females that were exposed to labelled dose of abamectin and half‐labelled dose of fenpropathrin exhibited the Holling‐III type responses. Parameters of random predator equation for both exposed and unexposed predators were estimated and compared with an equation with indicator variables. Both doses of both fungicide treatments did not have any impact on the attack rates of the thrips. Handling time (Th) estimates for males exposed to both doses of both fungicides were similar to that of the control, but there seemed to be a trend towards prolonged handling times for females in these exposures with a significantly prolonged Th found in labelled dose of mancozeb. Exposures of both doses of fenpropathrin and labelled dose of abamectin produced significantly lower attack rates and significantly prolonged handling times in both males and females, whereas an exposure of half‐labelled dose of abamectin had no obvious influence on the attack rates of the predator, but the handling time in females prolonged significantly. The theoretical maximum number of prey attacked by the thrips were 59.81 eggs per day per female and 23.21 eggs per day per male in the control, but it reduced by 57.03–71.41% and 6.03–36.75% for females and males in the insecticide exposures and 23.91–44.26% and ?5.13–11.55% in the fungicide exposures, respectively. The finding implies that the natural control effects of S. takahashii would be weakened by the application of the pesticides such as fenpropathrin, abamectin and mancozeb, which are often used to control insect pests and fungal diseases in apple orchards.  相似文献   

15.
Abstract

The predacious mite Agistemus exsertus Gonzalez completed its life-span when fed on eggs and crawlers of the Florida red scale Chrysomphalus ficus Ashmead and the white date scale Parlatoria blanchardi (Targioni). The development was faster when individuals were maintained on eggs and crawlers of C. ficus, compared with both stages of P. blanchardi. The average number of eggs/female/day was 2.5 and 1.1 on eggs and crawlers of C. ficus, respectively. Eggs and crawlers of P. blanchardi were an unsuitable food for egg laying for A. exsertus. Life table parameters showed that A. exsertus preferred eggs of C. ficus to the crawlers as prey. The population of the predator feeding on eggs and crawlers of Florida red scale multiplied 45 and 7 times in a generation time of 23 and 20.5 days, respectively. Under these conditions, the intrinsic rate of increase (r m) was (0.17 and 0.098) individuals/female/day on eggs and crawlers of C. ficus, while the finite rate of increase (λ) was (1.18 and 1.11) on both stages of C. ficus.  相似文献   

16.
Zvereva EL  Rank NE 《Oecologia》2004,140(3):516-522
Larvae of the leaf beetle Chrysomela lapponica derive a defensive secretion from salicyl glucosides found in the host plant Salix borealis. This secretion protects beetle larvae from some natural enemies, but does not appear to repel parasitoids. We tested the hypothesis that the fly parasitoid Megaselia opacicornis (Diptera, Phoridae) uses the larval defensive secretion of Ch. lapponica in its search for prey. In the field, nearly 30 times more M. opacicornis individuals were caught on leaves coated with sticky resin next to a source of secretion than on control leaves. In the laboratory, M. opacicornis females laid six times more eggs next to a cotton ball soaked in secretion than next to one soaked in water. Fly females also lay more eggs on prey rich in larval secretion than on secretion-poor prey. In the field, removal of defensive secretion from beetle prepupae resulted in a 7.5-fold reduction of oviposition by fly females. Parasitoids were nearly twice as likely to lay eggs on prepupae, rich in secretion, as on pupae, which contain little secretion. Fly offspring reared from beetle prepupae reached a 21% larger body mass than those reared from pupae. Finally, M. opacicornis females avoided host prepupae already parasitized by the tachinid fly Cleonice nitidiuscula, which possess little secretion. These experiments indicate that host plant-derived defensive secretions are used by this parasitoid for host location. Adaptation of parasitoids to use defensive secretions of hosts may selectively favor an increase in diet breadth in specialist herbivores.  相似文献   

17.
Larvae of the tephritid flyChaetorellia australis Hering, which infests flowerheads of the yellow starthistleCentaurea solstitialis L. (Asteraceae), and which is a candidate species for biological control, of that weed, were reared for the first time and for two consecutive generations on an artificial diet. At a density of 0.5 eggs per g diet a yield of 18.5% F1 adults (over hatched eggs), was obtained. When the density of eggs per g diet increased, the yield decreased. At 25°C the duration of development from egg to adult was 20–25 days for both generations. F1 adults reared on artificial diet had an average longevity of 32.0 days for males and 34.9 days for females. The fecundity was 53.3 eggs per female and the egg hatchability 88.8%. These and other biological parameters are similar to those of wild flies.   相似文献   

18.
The predatory stinkbugs Podisus maculiventris and Podisus sagitta were reared for more than 15 consecutive generations on a meat—based artificial diet. When they were returned to a diet of live prey (larvae of the pyralid Galleria mellonella) after different generations on the artificial diet, developmental and reproductive traits were similar to those of bugs continuously reared on live prey. Under laboratory conditions, predation rates for nymphs and adults of both pentatomids on larvae of the noctuid Spodoptera exigua were found to be unaffected by the previous diet. The results suggest that long—term rearing of P. maculiventris and P. sagitta on the meat—based artificial diet did not substantially affect the quality of the predators.  相似文献   

19.
Genetically engineered (GE) cotton, MON 88702, is protected against certain sucking pests, such as plant bugs and thrips, by producing mCry51Aa2, a modified protein from Bacillus thuringiensis (Bt). Predatory pirate bugs (Orius spp.), natural enemies contributing to biological pest control, are also sensitive to the insecticidal protein when exposed continuously to high concentrations. We evaluated effects of MON 88702 on Orius majusculus when fed prey types with different mCry51Aa2 concentrations. When neonates were provided exclusively Tetranychus urticae spider mites reared on MON 88702 (high mCry51Aa2 content), adverse effects on predator survival and development were confirmed, compared with specimens fed prey from near-isogenic non-Bt cotton. When fed a mixture of T. urticae and Ephestia kuehniella eggs (mCry51Aa2-free), predator life table parameters were similar to the treatment where eggs were fed exclusively. When mCry51Aa2-containing spider mites were provided for a limited time at the beginning or the end of juvenile development, effects were less pronounced. While pirate bug nymphs showed similar consumption rates for prey from Bt and non-Bt cotton, choice experiments revealed a preference for E. kuehniella eggs over spider mites. Lepidopteran larvae (Spodoptera littoralis, high mCry51Aa2 content) or cotton aphids (Aphis gossypii, mCry51Aa2-free) reared on MON 88702 as alternative prey did not result in adverse effects on O. majusculus. Our study suggests limited risk of mCry51Aa2-producing cotton for O. majusculus, because its sensitivity for the Bt protein is relatively low and its natural food consists of diverse prey species with varying concentrations of Bt protein.  相似文献   

20.
The predation rate of fifth instars and female adults of Orius laevigatus (Fieber) fed honeybee pollen, Ephestia kuehniella Zeller eggs or an egg yolk based artificial diet on second instars of the western flower thrips Frankliniella occidentalis (Pergande) was examined in the laboratory. Predation rate of both fifth instars and female adults was not influenced by their diet. Despite a lower body weight, O. laevigatus reared on artificial diet or pollen killed as many prey as their peers reared on E. kuehniella eggs, suggesting that body weight is not a reliable predictor of predation rate. The use of non-prey foods for O. laevigatus for mass production or as a supplementary food to sustain its populations in the field when prey are scarce is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号