首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
An endothelial cell monolayer separates interstitia from blood and lymph, and determines the bidirectional transfer of solutes and macromolecules across these biological spaces. We review advances in transport modalities across these endothelial barriers. Glucose is a major fuel for the brain and peripheral tissues, and insulin acts on both central and peripheral tissues to promote whole‐body metabolic signalling and anabolic activity. Blood‐brain barrier endothelial cells display stringent tight junctions and lack pinocytic activity. Delivery of blood glucose and insulin to the brain occurs through their respective carrier (Glucose transporter 1) and receptor (insulin receptor), enacting bona fide transcytosis. At supraphysiological concentrations, insulin is also likely transferred by fluid phase cellular uptake and paracellular transport, especially in peripheral microvascular endothelia. The lymphatic microvasculature also transports insulin but in this case from tissues to lymph and therefrom to blood. This serves to end the hormone's action and to absorb highly concentrated subcutaneously injected insulin in diabetic individuals. The former function may involve receptor‐mediated transcytosis into lymphatic endothelial cells, the latter fluid phase uptake and paracellular transport. Lymphatic capillaries also mediate carrier‐dependent transport of other nutrients and macromolecules. These findings challenge the notion that lymphatic capillaries only transport macromolecules through intercellular flaps.  相似文献   

2.
Antibodies against receptors that undergo transcytosis across the blood-brain barrier (BBB) have been used as vectors to target drugs or therapeutic peptides into the brain. We have recently discovered a novel single domain antibody, FC5, which transmigrates across human cerebral endothelial cells in vitro and the BBB in vivo. The purpose of this study was to characterize mechanisms of FC5 endocytosis and transcytosis across the BBB and its putative receptor on human brain endothelial cells. The transport of FC5 across human brain endothelial cells was polarized, charge independent and temperature dependent, suggesting a receptor-mediated process. FC5 taken up by human brain endothelial cells co-localized with clathrin but not with caveolin-1 by immunochemistry and was detected in clathrin-enriched subcellular fractions by western blot. The transendothelial migration of FC5 was reduced by inhibitors of clathrin-mediated endocytosis, K+ depletion and chlorpromazine, but was insensitive to caveolae inhibitors, filipin, nystatin or methyl-beta-cyclodextrin. Following internalization, FC5 was targeted to early endosomes, bypassed late endosomes/lysosomes and remained intact after transcytosis. The transcytosis process was inhibited by agents that affect actin cytoskeleton or intracellular signaling through PI3-kinase. Pretreatment of human brain endothelial cells with wheatgerm agglutinin, sialic acid, alpha(2,3)-neuraminidase or Maackia amurensis agglutinin that recognizes alpha(2,3)-, but not with Sambucus nigra agglutinin that recognizes alpha(2,6) sialylgalactosyl residues, significantly reduced FC5 transcytosis. FC5 failed to recognize brain endothelial cells-derived lipids, suggesting that it binds luminal alpha(2,3)-sialoglycoprotein receptor which triggers clathrin-mediated endocytosis. This putative receptor may be a new target for developing brain-targeting drug delivery vectors.  相似文献   

3.
Endothelial barrier function is regulated in part by the transcellular transport of albumin and other macromolecules via endothelial caveolae (i.e., this process is defined as transcytosis). Using pulmonary microvascular endothelial cells, we have identified the specific interactions between a cell surface albumin-docking protein gp60 and caveolin-1 as well as components of the signaling machinery, heterotrimeric G protein (G(i))- and Src-family tyrosine kinase. Ligation of gp60 on the apical membrane induces the release of caveolae from the apical membrane and activation of endocytosis. The formed vesicles contain the gp60-bound albumin and also albumin and other solutes present in the fluid phase. Vesicles are transported in a polarized manner to the basolateral membrane, releasing their contents by exocytosis into the subendothelial space. The signaling functions of G(i) and Src are important in the release of caveolae from the plasma membrane. The Src-induced phosphorylation of caveolin-1 is crucial in regulating interactions of caveolin-1 with other components of the signaling machinery such as G(i), and key signaling entry of caveolae into the cytoplasm and endocytosis of albumin and other solutes. This review addresses the basis of transcytosis in endothelial cells, its central role as a determinant of endothelial barrier function, and signaling mechanisms involved in regulating fission of caveolae and trafficking of the formed vesicles from the luminal to abluminal side of the endothelial barrier.  相似文献   

4.
The means by which the chemokine CCL2 produced in the brain parenchyma can recruit leukocytes lying behind the highly impervious endothelium of the blood–brain barrier (BBB) has remained a paradox. As other chemokines have been evidenced to stimulate their own synthesis and release by peripheral microvascular endothelial cells, and/or undergo transcytosis in the abluminal-to-luminal direction, we determined whether CCL2 experiences similar fates across brain microvascular endothelial cells (BMEC). Using cultured BMEC as a paradigm of the BBB, it was observed that exogenous unlabeled CCL2 actually depressed the release of endogenous CCL2, and further caused diminished CCL2 mRNA levels in these cells. On the other hand, exogenous 125I-labeled CCL2 exhibited transport across BMEC in a manner that was sensitive to temperature, competition by excess unlabeled CCL2 but not unlabeled CCL3, knockdown of caveolin-1/caveolae, and elimination of the cognate CCL2 receptor CCR2. These results implied a facet of CCL2 transport by a transcellular mechanism partly involving binding of CCL2 to CCR2, and subsequent transfer to caveolae vesicles for transcytosis. This notion was supported by double-label immuno-electronmicroscopy, which revealed co-localization of caveolin-1 with exogenous CCL2, during this chemokine's transit across BMEC. Collectively, these findings provide a rationale by which CCL2, deposited on the abluminal side of the brain microvasculature during inflammatory episodes, can be relayed across the BBB to foster leukocyte recruitment.  相似文献   

5.
The pathways by which insulin exits the vasculature to muscle interstitium have not been characterized. In the present study, we infused FITC-labeled insulin to trace morphologically (using confocal immunohistochemical methods) insulin transport into rat skeletal muscle. We biopsied rectus muscle at 0, 10, 30, and 60 min after beginning a continuous (10 mU x min(-1) x kg(-1)), intravenous FITC-insulin infusion (with euglycemia maintained). The FITC-insulin distribution was compared with that of insulin receptors (IR), IGF-I receptors (IGF-IR), and caveolin-1 (a protein marker for caveolae) in skeletal muscle vasculature. We observed that muscle endothelium stained strongly for FITC-insulin within 10 min, and this persisted to 60 min. Endothelium stained more strongly for FITC-insulin than any other cellular elements in muscle. IR, IGF-IR, and caveolin-1 were also detected immunohistochemically in muscle endothelial cells. We further compared their intracellular distribution with that of FITC-insulin in cultured bovine aortic endothelial cells (bAECs). Considerable colocalization of IR or IGF-IR with FITC-insulin was noted. There was some but less overlap of IR or IGF-IR or FITC-insulin with caveolin-1. Immunoprecipitation of IR coprecipitated caveolin-1, and conversely the precipitation of caveolin-1 brought down IR. Furthermore, insulin increased the tyrosine phosphorylation of caveolin-1, and filipin (which inhibits caveolae formation) blocked insulin uptake. Finally, the ability of insulin, IGF-I, and IGF-I-blocking antibody to diminish insulin transport across bAECs grown on transwell plates suggested that IGF-IR, in addition to IR, can also mediate transendothelial insulin transit. We conclude that in vivo endothelial cells rapidly take up and concentrate insulin relative to plasma and muscle interstitium and that IGF-IR, like IR, may mediate insulin transit through endothelial cells in a process involving caveolae.  相似文献   

6.
As insulin's movement from plasma to muscle interstitium is rate limiting for its metabolic action, defining the regulation of this movement is critical. Here, we address whether caveolin-1 is required for the first step of insulin's transendothelial transport, its uptake by vascular endothelial cells (ECs), and whether IL-6 and TNFα affect insulin uptake or caveolin-1 expression. Uptake of FITC-labeled insulin was measured using confocal microscopy in control bovine aortic ECs (bAECs), in bAECs in which caveolin-1 was either knocked down or overexpressed, in murine ECs from caveolin-1(-/-) mice and in bAECs exposed to inflammatory cytokines. Knockdown of caveolin-1 expression in bAECs using specific caveolin-1 siRNA reduced caveolin-1 mRNA and protein expression by ~ 70%, and reduced FITC-insulin uptake by 67% (P < 0.05 for each). Over-expression of caveolin-1 increased insulin uptake (P < 0.05). Caveolin-1-null mouse aortic ECs did not take up insulin and re-expression of caveolin-1 by transfecting these cells with FLAG-tagged caveolin-1 DNA rescued FITC-insulin uptake. Knockdown of caveolin-1 significantly reduced both insulin receptor protein level and insulin-stimulated Akt1 phosphorylation. Knockdown of caveolin-1 also inhibited insulin-induced caveolin-1 and IGF-1 receptor translocation to the plasma membrane. Compared with controls, IL-6 or TNFα (20 ng/ml for 24 h) inhibited FITC-insulin uptake as well as the expression of caveolin-1 mRNA and protein (P < 0.05 for each). IL-6 or TNFα also significantly reduced plasma membrane-associated caveolin-1. Thus, we conclude that insulin uptake by ECs requires expression of caveolin-1 supporting a role for caveolae mediating insulin uptake. Proinflammatory cytokines may inhibit insulin uptake, at least in part, by inhibiting caveolin-1 expression.  相似文献   

7.
Recent studies on the role of caveolin-1 in adipocytes showed that caveolin has emerged as an important regulatory element in insulin signaling but little is known on its role in skeletal muscle cells. In this study, we demonstrate for the first time that caveolin-1 plays a crucial role in insulin dependent glucose uptake in skeletal muscle cells. Differentiation of L6 skeletal muscle cells induce the expression of caveolin-1 and caveolin-3 with partial colocalization. However in contrast to adipocytes, phosphorylation of insulin receptor beta (IRbeta) and Akt/Erk was not affected by the respective downregulation of caveolin-1 or caveolin-3 in the muscle cells. Moreover, the phosphorylation of IRbeta was detected not only in the caveolae but also in the non-caveolae fractions of the muscle cells despite the interaction of IRbeta with caveolin-1 and caveolin-3. These data implicate the lack of relationship between caveolins and IRbeta pathway in the muscle cells, different from the adipocytes. However, glucose uptake was reduced specifically by downregulation of caveolin-1, but not that of caveolin-3. Taken together, these observations suggest that caveolin-1 plays a crucial role in glucose uptake in differentiated muscle cells and that the regulation of caveolin-1 expression may be an important mechanism for insulin sensitivity, implying the role of muscle cells for type 2 diabetes.  相似文献   

8.
Microvascular permeability is mediated by (i) the caveolar transcytosis of molecules across endothelial cells and (ii) the paracellular movement of ions and nutrients. Recently, we derived Cav-1 (-/-) knock-out mice using standard homologous recombination techniques. These mice are viable but show a loss of endothelial cell caveolae and striking defects in caveolae-mediated endocytosis. Thus, a compensatory mechanism must be operating in these mice. One possible compensatory response would be an increase in the paracellular pathway, resulting in increased microvascular permeability. To test this hypothesis directly, we studied the microvascular permeability of Cav-1 null mice using a variety of complementary in vivo approaches. Radio-iodinated bovine serum albumin was injected into Cav-1-deficient mice, and its rate of clearance from the circulatory system was compared with that of wild type control mice. Our results indicate that iodinated bovine serum albumin is removed from the circulatory system of Cav-1-deficient mice at a substantially faster rate. To determine whether this defect is restricted to the paracellular movement of albumin, lungs from Cav-1-deficient mice were next perfused with the electron dense dye Ruthenium Red. Micrographs of lung endothelial cells from Cav-1-deficient mice demonstrate that the paracellular movement of Ruthenium Red is dramatically increased. In addition, electron micrographs of Cav-1-deficient lung capillaries reveal defects in tight junction morphology and abnormalities in capillary endothelial cell adhesion to the basement membrane. This defect in cell-substrate attachment is consistent with the postulated role of caveolin-1 in positively regulating integrin signaling. Because loss of caveolin-1 expression results in constitutive activation of eNOS activity, we also examined whether these increases in microvascular permeability are NO-dependent. Interestingly, treatment with l-NAME (a well established nitric-oxide synthase inhibitor) successfully reversed the microvascular hyperpermeability phenotype of Cav-1 knock-out mice. Thus, caveolin-1 plays a dual regulatory role in controlling microvascular permeability: (i) as a structural protein that is required for caveolae formation and caveolar transcytosis and (ii) as a tonic inhibitor of eNOS activity to negatively regulate the paracellular pathway.  相似文献   

9.
Poor Mg status is a risk factor for Alzheimer’s disease (AD), and the underlying mechanisms remain elusive. Here, we provided the first evidence that elevated Mg levels significantly reduced the blood-brain barrier (BBB) permeability and regulated its function in vitro. Transient receptor potential melastatin 7 (TRPM7) and magnesium transporter subtype 1 (MagT1) were two major cellular receptors mediating entry of extracellular Mg2+ into the cells. Elevated Mg levels also induced an accelerated clearance of amyloid-β peptide (Aβ) from the brain to the blood side via BBB transcytosis through low-density lipoprotein receptor-related protein (LRP) and phosphatidylinositol binding clathrin assembly protein (PICALM), while reduced the influx of Aβ from the blood to the brain side involving receptor for advanced glycation end products (RAGE) and caveolae. Mg enhanced BBB barrier properties and overall expression of LRP1 and PICALM whereas reduced that of RAGE and caveolin-1. Apical-to-basolateral and vice versa steady-state Aβ flux achieved an equilibrium of 18 and 0.27 fmol/min/cm2, respectively, about 30 min after the initial addition of physiological levels of free Aβ. Knockdown of caveolin-1 or disruption of caveolae membrane microdomains reduced RAGE-mediated influx significantly, but not LRP1-mediated efflux of Aβ. Stimulating endothelial cells with vascular endothelial growth factor (VEGF) enhanced caveolin-1 phosphorylation and RAGE expression. Co-immunoprecipitation demonstrated that RAGE, but not LRP1, was physically associated with caveolin-1. Thus, Mg can reduce BBB permeability and promote BBB clearance of Aβ from the brain by increasing the expression of LRP1 and PICALM while reducing the level of RAGE and caveolin-1.  相似文献   

10.
11.

Background

The Duffy antigen receptor for chemokines (DARC) shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.

Methodology/Principal Findings

We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated 125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. 125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression. 125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF) enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.

Conclusions/Significance

These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.  相似文献   

12.
Albumin transcytosis, a determinant of transendothelial permeability, is mediated by the release of caveolae from the plasma membrane. We addressed the role of Src phosphorylation of the GTPase dynamin-2 in the mechanism of caveolae release and albumin transport. Studies were made in microvascular endothelial cells in which the uptake of cholera toxin subunit B, a marker of caveolae, and (125)I-albumin was used to assess caveolae-mediated endocytosis. Albumin binding to the 60-kDa cell surface albumin-binding protein, gp60, induced Src activation (phosphorylation on Tyr(416)) within 1 min and resulted in Src-dependent tyrosine phosphorylation of dynamin-2, which increased its association with caveolin-1, the caveolae scaffold protein. Expression of kinase-defective Src mutant interfered with the association between dynamin-2, which caveolin-1 and prevented the uptake of albumin. Expression of non-Src-phosphorylatable dynamin (Y231F/Y597F) resulted in reduced association with caveolin-1, and in contrast to WT-dynamin-2, the mutant failed to translocate to the caveolin-rich membrane fraction. The Y231F/Y597F dynamin-2 mutant expression also resulted in impaired albumin and cholera toxin subunit B uptake and reduced transendothelial albumin transport. Thus, Src-mediated phosphorylation of dynamin-2 is an essential requirement for scission of caveolae and the resultant transendothelial transport of albumin.  相似文献   

13.
The synthesis and release of the neurotrophic factor oleic acid requires internalization of albumin into the astrocyte, which is mediated by megalin. In this study, we show that the binding and internalization of albumin involve its interaction with megalin, caveolin-1, caveolin-2 and cavin, but not with clathrin in astrocytes from primary culture. Electron microscopy analyses revealed albumin-gold complexes localized in caveolae, but not in clathrin-coated vesicles. Neither chlorpromazine nor silencing clathrin expression modified albumin uptake. Silencing caveolin-1 strongly reduced the binding and internalization of albumin and the distribution of megalin in the plasma membrane. However, silencing caveolin-2 only decreased albumin internalization, suggesting that caveolin-1 is responsible for megalin recruitment to the caveolae and that caveolin-2 participates in caveolae internalization. In most tissues, the cytosolic adaptor protein disabled (Dab)-2 connects megalin to clathrin, astrocytes lack Dab-2; instead, they express Dab-1, which interacts with caveolin-1 and megalin and is required for albumin internalization. The transcytosis of albumin in astrocytes, including the passage through the endoplasmic reticulum, which is a compulsory step for oleic acid synthesis, was confirmed by electron microscopy analyses. Thus, whereas silencing clathrin did not modify the synthesis and release of oleic acid, the knock-down of caveolin-1, caveolin-2 and Dab-1 strongly reduced the synthesis and release of this neurotrophic factor. In conclusion, caveola-mediated endocytosis of albumin requires megalin and the adaptor protein Dab-1 in cultured astrocytes. Albumin endocytosis may be a key step in brain development because it stimulates the synthesis of oleic acid, which in turn promotes neuronal differentiation.  相似文献   

14.
15.
Clinical studies have established the important impact of atherosclerotic disease in Western societies. This disease is characterized by the accumulation of lipids and the migration of various cell types in the sub-endothelial space of blood vessels. As demonstrated by many studies, endothelial cells play an essential role in the development of this disease. The endothelium acts as a gatekeeper of blood vessel integrity and cardiovascular health status. For instance, the transfer of lipids via the transport of lipoproteins in the arterial intima is believed to be mediated by endothelial cells through a process termed transcytosis. In addition, lipoproteins that accumulate in the sub-endothelial space may also be modified, in a process that can direct the activation of endothelial cells. These steps are essential for the initiation of an atherosclerotic plaque and may be mediated, at least in part, by caveolae and their associated protein caveolin-1. In the present study, we evaluate the role of caveolin-1/caveolae in the regulation of these two steps in endothelial cells. Our data clearly demonstrate that caveolin-1 is involved in the regulation of lipoprotein transcytosis across endothelial cells and in the regulation of vascular inflammation.  相似文献   

16.
Caveolae-mediated endocytosis in endothelial cells is stimulated by the binding of albumin to gp60, a specific albumin-binding protein localized in caveolae. The activation of gp60 induces its cell surface clustering and association with caveolin-1, the caveolar-scaffolding protein. This interaction leads to G(i)-induced Src kinase activation, which in turn signals dynamin-2-mediated fission and directed migration of caveolae-derived vesicles from apical to basal membrane. In this study, we investigated the possible role of the Gbetagamma heterodimer in signaling G(i)-induced Src activation and subsequent caveolae-mediated endocytosis. We observed using rat lung microvascular endothelial cells that expression of the C terminus of beta-adrenergic receptor kinase (ct-betaARK), an inhibitor Gbetagamma signaling, prevented gp60-dependent Src activation as well as caveolae-mediated endocytosis and transcellular transport of albumin and uptake of cholera toxin subunit B, a specific marker of caveolae internalization. Expression of ct-betaARK also prevented Src-mediated tyrosine phosphorylation of caveolin-1 and dynamin-2 and the resultant phosphorylation-dependent association of dynamin-2 and caveolin-1. Also, the direct activation of Gbetagamma using a specific cell-permeant activating peptide (myristoylated-SIRKALNILGYPDYD) simulated the effects of gp60 in inducing Src activation, caveolin-1, and dynamin-2 phosphorylation as well as caveolae-mediated endocytosis of cholera toxin subunit B. The myristoylated-SIRKALNILGYPDYD peptide-induced responses were inhibited by the expression of ct-betaARK. Taken together, our results demonstrate that Gbetagamma activation of Src signals caveolae-mediated endocytosis and transendothelial albumin transport via transcytosis.  相似文献   

17.
Caveolae transcytosis with its diverse mechanisms-fluid phase, adsorptive, and receptor-mediated-plays an important role in the continuous exchange of molecules across the endothelium. We will discuss key features of endothelial transcytosis and caveolae that have been studied recently and have increased our understanding of caveolae function in transcytosis at the molecular level. During transcytosis, caveolae "pinch off" from the plasma membrane to form discrete vesicular carriers that shuttle to the opposite front of endothelial cells, fuse with the plasma membrane, and discharge their cargo into the perivascular space. Endothelial transcytosis exhibits distinct properties, the most important being rapid and efficient coupling of endocytosis to exocytosis on opposite plasma membrane. We address herein the membrane fusion-fission reactions that underlie transcytosis. Caveolae move across the endothelial cells with their cargo predominantly in the fluid phase through an active process that bypasses the lysosomes. Endothelial transcytosis is a constitutive process of vesicular transport. Recent studies show that transcytosis can be upregulated in response to pathological stimuli. Transcytosis via caveolae is an important route for the regulation of endothelial barrier function and may participate in different vascular diseases.  相似文献   

18.
The present study aimed to investigate pathways that contribute to uptake and transcytosis of high-density lipoproteins (HDLs) and HDL-associated alpha-tocopherol (alpha TocH) across an in vitro model of the blood-brain barrier (BBB). In primary porcine brain capillary endothelial cells HDL-associated alpha TocH was taken up in 10-fold excess of HDL holoparticles, indicating efficient selective uptake, a pathway mediated by scavenger receptor class B, type I (SR-BI). SR-BI was present in caveolae of brain capillary endothelial cells and expressed almost exclusively at the apical membrane. Disruption of caveolae with methyl-beta-cyclodextrin (CDX) resulted in (mis)sorting of SR-BI to the basolateral membrane. Immunohistochemistry of porcine brain cryosections revealed SR-BI expression on brain capillary endothelial cells and presumably astrocytic endfeet. HDL-associated [(14)C]alpha TocH taken up by brain capillary endothelial cells was recovered in sucrose gradient fractions containing the majority of cellular caveolin-1, the major caveolae-associated protein. During mass transfer studies using alpha TocH-enriched HDL, approximately 50% of cellular alpha TocH was recovered with the bulk of cellular caveolin-1 and SR-BI. Efflux experiments revealed that a substantial amount of cell-associated [(14)C]alpha TocH could be mobilized into the culture medium. In addition, apical-to-basolateral transport of HDL holoparticles and HDL-associated alpha TocH was saturable. Results from the present study suggest that part of cerebral apolipoprotein A-I and alpha TocH originates from plasma HDL transcytosed across the BBB and that caveolae-located SR-BI facilitates selective uptake of HDL-associated alpha TocH at the BBB.  相似文献   

19.
《The Journal of cell biology》1994,127(5):1217-1232
Caveolae or noncoated plasmalemmal vesicles found in a variety of cells have been implicated in a number of important cellular functions including endocytosis, transcytosis, and potocytosis. Their function in transport across endothelium has been especially controversial, at least in part because there has not been any way to selectively inhibit this putative pathway. We now show that the ability of sterol binding agents such as filipin to disassemble endothelial noncoated but not coated plasmalemmal vesicles selectively inhibits caveolae-mediated intracellular and transcellular transport of select macromolecules in endothelium. Filipin significantly reduces the transcellular transport of insulin and albumin across cultured endothelial cell monolayers. Rat lung microvascular permeability to albumin in situ is significantly decreased after filipin perfusion. Conversely, paracellular transport of the small solute inulin is not inhibited in vitro or in situ. In addition, we show that caveolae mediate the scavenger endocytosis of conformationally modified albumins for delivery to endosomes and lysosomes for degradation. This intracellular transport is inhibited by filipin both in vitro and in situ. Other sterol binding agents including nystatin and digitonin also inhibit this degradative process. Conversely, the endocytosis and degradation of activated alpha 2- macroglobulin, a known ligand of the clathrin-dependent pathway, is not affected. Interestingly, filipin appears to inhibit insulin uptake by endothelium for transcytosis, a caveolae-mediated process, but not endocytosis for degradation, apparently mediated by the clathrin-coated pathway. Such selective inhibition of caveolae not only provides critical evidence for the role of caveolae in the intracellular and transcellular transport of select macromolecules in endothelium but also may be useful for distinguishing transport mediated by coated versus noncoated vesicles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号