首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.Key words: genomic imprinting, DNA methylation, Gtl2, secondary DMR, epigenetics  相似文献   

3.

Background

Differentially methylated regions (DMRs) are associated with many imprinted genes. In mice methylation at a DMR upstream of the H19 gene known as the Imprint Control region (IC1) is acquired in the male germline and influences the methylation status of DMRs 100 kb away in the adjacent Insulin-like growth factor 2 (Igf2) gene through long-range interactions. In humans, germline-derived or post-zygotically acquired imprinting defects at IC1 are associated with aberrant activation or repression of IGF2, resulting in the congenital growth disorders Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, respectively. In Wilms tumour and colorectal cancer, biallelic expression of IGF2 has been observed in association with loss of methylation at a DMR in IGF2. This DMR, known as DMR0, has been shown to be methylated on the silent maternal IGF2 allele presumably with a role in repression. The effect of IGF2 DMR0 methylation changes in the aetiology of BWS or SRS is unknown.

Methodology/Principal Findings

We analysed the methylation status of the DMR0 in BWS, SRS and Wilms tumour patients by conventional bisulphite sequencing and pyrosequencing. We show here that, contrary to previous reports, the IGF2 DMR0 is actually methylated on the active paternal allele in peripheral blood and kidney. This is similar to the IC1 methylation status and is inconsistent with the proposed silencing function of the maternal IGF2 allele. Beckwith-Wiedemann and Silver-Russell patients with IC1 methylation defects have similar methylation defects at the IGF2 DMR0, consistent with IC1 regulating methylation at IGF2 in cis. In Wilms tumour, however, methylation profiles of IC1 and IGF2 DMR0 are indicative of methylation changes occurring on both parental alleles rather than in cis.

Conclusions/Significance

These results support a model in which DMR0 and IC1 have opposite susceptibilities to global hyper and hypomethylation during tumorigenesis independent of the parent of origin imprint. In contrast, during embryogenesis DMR0 is methylated or demethylated according to the germline methylation imprint at the IC1, indicating different mechanisms of imprinting loss in neoplastic and non-neoplastic cells.  相似文献   

4.
The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs.  相似文献   

5.
The imprinted Igf2 gene is active only on the paternal allele in most tissues. Its imprinting involves a cis-acting imprinting-control region (ICR) located upstream of the neighboring and maternally expressed H19 gene. It is thought that differential methylation of the parental alleles at the ICR is crucial for parental imprinting of both genes. Differentially methylated regions (DMRs) have also been identified within the Igf2 gene and their differential methylation is thought to be established during early development. To gain further insight into the function of these DMRs, we performed a quantitative analysis of their allelic methylation levels in different tissues during fetal development and the postnatal period in the mouse. Surprisingly, we found that the methylation levels of Igf2 DMRs vary extensively during fetal development, mostly on the expressed paternal allele. In particular, in skeletal muscle, differential allelic methylation in both DMR 1 and DMR 2 occurs only after birth, whereas correct paternal monoallelic expression is always observed, including in the embryonic stages. This suggests that differential methylation in the DMR 1 and DMR 2 of the Igf2 gene is dispensable for its imprinting in skeletal muscle. Furthermore, progressive methylation of the Igf2 paternal allele appears to be correlated with concomitant postnatal down-regulation and silencing of the gene. We discuss possible relations between Igf2 allelic methylation and expression during fetal development.  相似文献   

6.
《Epigenetics》2013,8(3):214-221
Parent-of-origin specific expression of imprinted genes relies on the differential DNA methylation of specific genomic regions. Differentially methylated regions (DMRs) acquire DNA methylation either during gametogenesis (primary DMR) or after fertilisation when allele-specific expression is established (secondary DMR). Little is known about the function of these secondary DMRs. We investigated the DMR spanning Cdkn1c in mouse embryonic stem cells, androgenetic stem cells and embryonic germ stem cells. In all cases, expression of Cdkn1c was appropriately repressed in in vitro differentiated cells. However, stem cells failed to de novo methylate the silenced gene even after sustained differentiation. In the absence of maintained DNA methylation (Dnmt1-/-), Cdkn1c escapes silencing demonstrating the requirement for DNA methylation in long term silencing in vivo. We propose that postfertilisation differential methylation reflects the importance of retaining single gene dosage of a subset of imprinted loci in the adult.  相似文献   

7.
8.
《Epigenetics》2013,8(8):1012-1020
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.  相似文献   

9.
5-methyl-C (5mC) and 5-hydroxymethyl-C (5hmC) are epigenetic marks with well-known and putative roles in gene regulation, respectively. These two DNA covalent modifications cannot be distinguished by bisulfite sequencing or restriction digestion, the standard methods of 5mC detection. The methylated CpG island recovery assay (MIRA), however, specifically detects 5mC but not 5hmC. We further developed MIRA for the analysis of allele-specific CpG methylation at differentially methylated regions (DMRs) of imprinted genes. MIRA specifically distinguished between the parental alleles by capturing the paternally methylated H19/Igf2 DMR and maternally methylated KvDMR1 in mouse embryo fibroblasts (MEFs) carrying paternal and maternal duplication of mouse distal Chr7, respectively. MIRA in combination with multiplex single nucleotide primer extension (SNuPE) assays specifically captured the methylated parental allele from normal cells at a set of maternally and paternally methylated DMRs. The assay correctly recognized aberrant biallelic methylation in a case of loss of imprinting. The MIRA-SNuPE assays revealed that placenta exhibited less DNA methylation bias at DMRs compared to yolk sac, amnion, brain, heart, kidney, liver and muscle. This method should be useful for the analysis of allele-specific methylation events related to genomic imprinting, X chromosome inactivation and for verifying and screening haplotype-associated methylation differences in the human population.Key words: epigenetics, imprinting, DMR, MIRA, MBD, DNA methylation, SNuPE  相似文献   

10.
Dlk1 and Gtl2 are reciprocally expressed imprinted genes located on mouse chromosome 12. The Dlk1-Gtl2 locus carries three differentially methylated regions (DMRs), which are methylated only on the paternal allele. Of these, the intergenic (IG) DMR, located 12 kb upstream of Gtl2, is required for proper imprinting of linked genes on the maternal chromosome, while the Gtl2 DMR, located across the promoter of the Gtl2 gene, is implicated in imprinting on both parental chromosomes. In addition to DNA methylation, modification of histone proteins is also an important regulator of imprinted gene expression. Chromatin immunoprecipitation was therefore used to examine the pattern of histone modifications across the IG and Gtl2 DMRs. The data show maternal-specific histone acetylation at the Gtl2 DMR, but not at the IG DMR. In contrast, only low levels of histone methylation were observed throughout the region, and there was no difference between the two parental alleles. An existing mouse line carrying a deletion/insertion upstream of Gtl2 is unable to imprint the Dlk1-Gtl2 locus properly and demonstrates loss of allele-specific methylation at the Gtl2 DMR. Further analysis of these animals now shows that the loss of allele-specific methylation is accompanied by increased paternal histone acetylation at the Gtl2 DMR, with the activated paternal allele adopting a maternal acetylation pattern. These data indicate that interactions between DNA methylation and histone acetylation are involved in regulating the imprinting of the Dlk1-Gtl2 locus.  相似文献   

11.
12.
13.
14.
15.
16.

Background

The Dlk1 and Gtl2 genes define a region of mouse chromosome 12 that is subject to genomic imprinting, the parental allele-specific expression of a gene. Although imprinted genes play important roles in growth and development, the mechanisms by which imprinting is established and maintained are poorly understood. Differentially methylated regions (DMRs), which carry methylation on only one parental allele, are involved in imprinting control at many loci. The Dlk1-Gtl2 region contains three known DMRs, the Dlk1 DMR in the 3' region of Dlk1, the intergenic DMR 15 kb upstream of Gtl2, and the Gtl2 DMR at the Gtl2 promoter. Three mouse models are analyzed here that provide new information about the regulation of Dlk1-Gtl2 imprinting.

Results

A previously existing insertional mutation (Gtl2lacZ), and a targeted deletion in which the Gtl2 upstream region was replaced by a Neo cassette (Gtl2Δ5'Neo), display partial lethality and dwarfism upon paternal inheritance. Molecular characterization shows that both mutations cause loss of imprinting and changes in expression of the Dlk1, Gtl2 and Meg8/Rian genes. Dlk1 levels are decreased upon paternal inheritance of either mutation, suggesting Dlk1 may be causative for the lethality and dwarfism. Loss of imprinting on the paternal chromosome in both Gtl2lacZ and Gtl2Δ5'Neo mice is accompanied by the loss of paternal-specific Gtl2 DMR methylation, while maternal loss of imprinting suggests a previously unknown regulatory role for the maternal Gtl2 DMR. Unexpectedly, when the Neo gene is excised, Gtl2Δ5' animals are of normal size, imprinting is unchanged and the Gtl2 DMR is properly methylated. The exogenous DNA sequences integrated upstream of Gtl2 are therefore responsible for the growth and imprinting effects.

Conclusion

These data provide further evidence for the coregulation of the imprinted Dlk1 and Gtl2 genes, and support a role for Dlk1 as an important neonatal growth factor. The ability of the Gtl2lacZ and Gtl2Δ5'Neo mutations to cause long-range changes in imprinting and gene expression suggest that regional imprinting regulatory elements may lie in proximity to the integration site.  相似文献   

17.
DNA methylation is an essential epigenetic mechanism involved in many essential cellular processes. During development epigenetic reprograming takes place during gametogenesis and then again in the pre-implantation embryo. These two reprograming windows ensure genome-wide removal of methylation in the primordial germ cells so that sex-specific signatures can be acquired in the sperm and oocyte. Following fertilization the majority of this epigenetic information is erased to give the developing embryo an epigenetic profile coherent with pluripotency. It is estimated that ∼65% of the genome is differentially methylated between the gametes, however following embryonic reprogramming only parent-of-origin methylation at known imprinted loci remains. This suggests that trans-acting factors such as Zfp57 can discriminate imprinted differentially methylated regions (DMRs) from the thousands of CpG rich regions that are differentially marked in the gametes. Recently transient imprinted DMRs have been identified suggesting that these loci are also protected from pre-implantation reprograming but succumb to de novo remethylation at the implantation stage. This highlights that “ubiquitous” imprinted loci are also resilient to gaining methylation by protecting their unmethylated alleles. In this review I examine the processes involved in epigenetic reprograming and the mechanisms that ensure allelic methylation at imprinted loci is retained throughout the life of the organism, discussing the critical differences between mouse and humans.This article is part of a Directed Issue entitled: Epigenetics Dynamics in development and disease.  相似文献   

18.
Folic acid (FA) supplementation before and during pregnancy has been associated with decreased risk of neural tube defects although recent reports suggest it may also increase the risk of other chronic diseases. We evaluated exposure to maternal FA supplementation before and during pregnancy in relation to aberrant DNA methylation at two differentially methylated regions (DMRs) regulating insulin-like growth factor 2 (IGF2) expression in infants. Aberrant methylation at these regions has been associated with IGF2 deregulation and increased susceptibility to several chronic diseases. Using a self-administered questionnaire, we assessed FA intake before and during pregnancy in 438 pregnant women. Pyrosequencing was used to measure methylation at two IGF2 DMRs in umbilical cord blood leukocytes. Mixed models were used to determine relationships between maternal FA supplementation before or during pregnancy and DNA methylation levels at birth. Average methylation at the H19 DMR was 61.2%. Compared to infants born to women reporting no FA intake before or during pregnancy, methylation levels at the H19 DMR decreased with increasing FA intake (2.8%, p = 0.03 and 4.9%, p = 0.04, for intake before and during pregnancy, respectively). This methylation decrease was most pronounced in male infants (p = 0.01). Methylation alterations at the H19 DMR are likely an important mechanism by which FA risks and/or benefits are conferred in utero. Because stable methylation marks at DMRs regulating imprinted genes are acquired before gastrulation, they may serve as archives of early exposures with the potential to improve our understanding of developmental origins of adult disease.Key words: folic acid, epigenetics, IGF2, periconception, prenatal, exposure  相似文献   

19.
Human chromosome 14q32.2 harbors the germline-derived primary DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the postfertilization-derived secondary MEG3-DMR, together with multiple imprinted genes. Although previous studies in cases with microdeletions and epimutations affecting both DMRs and paternal/maternal uniparental disomy 14-like phenotypes argue for a critical regulatory function of the two DMRs for the 14q32.2 imprinted region, the precise role of the individual DMR remains to be clarified. We studied an infant with upd(14)pat body and placental phenotypes and a heterozygous microdeletion involving the IG-DMR alone (patient 1) and a neonate with upd(14)pat body, but no placental phenotype and a heterozygous microdeletion involving the MEG3-DMR alone (patient 2). The results generated from the analysis of these two patients imply that the IG-DMR and the MEG3-DMR function as imprinting control centers in the placenta and the body, respectively, with a hierarchical interaction for the methylation pattern in the body governed by the IG-DMR. To our knowledge, this is the first study demonstrating an essential long-range imprinting regulatory function for the secondary DMR.  相似文献   

20.
Park CH  Kim HS  Lee SG  Lee CK 《Genomics》2009,93(2):179-186
The aim of this study was to demonstrate how differential methylation imprints are established during porcine preimplantation embryo development. For the methylation analysis, the primers for the three Igf2/H19 DMRs were designed and based upon previously published sequences. The methylation marks of Igf2/H19 DMRs were analysed in sperm and MII oocytes with our results showing that these regions are fully methylated in sperm but remain unmethylated in MII oocytes. In order to identify the methylation pattern at the pronuclear stage, we indirectly compared the methylation profile of Igf2/H19 DMR3 in each zygote derived by in vitro fertilization, parthenogenesis, and androgenesis. Interestingly, this region was found to be differently methylated according to parental origins; DMR3 was hemimethylated in in vitro fertilized zygotes, fully methylated in parthenogenetic zygotes, and demethylated in androgenetic zygotes. These results indicate that the methylation mark of the paternal allele is erased by active demethylation, and that of the maternal one is de novo methylated. We further examined the methylation imprints of Igf2/H19 DMR3 during early embryonic development. The hemimethylated pattern as seen in zygotes fertilized in vitro was observed up to the 4-cell embryo stage. However, this mark was exclusively demethylated at the 8-cell stage and then restored at the morula stage. These results suggest that methylation imprints are established via dynamic changes during early embryonic development in porcine embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号