首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Biotransformation of the highly substituted pyridine derivative 2-amino-4-methyl-3-nitropyridine by Cunninghamella elegans ATCC 26269 yielded three products each with a molecular weight of 169?Da which were identified as 2-amino-5-hydroxy-4-methyl-3-nitropyridine, 2-amino-4-hydroxymethyl-3-nitropyridine, and 2-amino-4-methyl-3-nitropyridine-1-oxide. Biotransformation by Streptomyces antibioticus ATCC 14890 gave two different products each with a molecular weight of 169?Da; one was acid labile and converted to the other stable product under acidic conditions. The structure of the stable product was established as 2-amino-4-methyl-3-nitro-6(1H)-pyridinone, and that of the less stable product was assigned as its tautomer 2-amino-6-hydroxy-4-methyl-3-nitropyridine. Four of the five biotransformation products are new compounds. Several strains of Aspergillus also converted the same substrate to the lactam 2-amino-4-methyl-3-nitro-6(1H)-pyridinone. Microbial hydroxylation by C. elegans was found to be inhibited by sulfate ion. In order to improve the yield and productivity of the 5-hydroxylation reaction by C. elegans, critical process parameters were determined and Design of Experiments (DOE) analyses were performed. Biotransformation by C. elegans was scaled up to 15-l fermentors providing 2-amino-5-hydroxy-4-methyl-3-nitropyridine at ca. 13?% yield in multi-gram levels. A simple isolation process not requiring chromatography was developed to provide purified 2-amino-5-hydroxy-4-methyl-3-nitropyridine of excellent quality.  相似文献   

2.
It was shown that 3-amino-3-deoxy-D-glucose, one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., inhibits the bacterial synthesis of cell wall. The antibiotic (100 μg/ml) significantly inhibits the growth of Straphylococcis aureus FDA 209P as well as the incorporation of DL-[14C]alanine into the acid-insoluble macromolecular fraction of its growing cells in the presence of chloramphenicol (100 μg/ml). In contrast, the antibiotic doed not affect the incorporation of [3H]thymidine, [3H]uridine and L-[14C]leucine. The other constituents of kanamycin, 6-amino-6-deoxy-D-glucose and deoxystreptamine do not inhibit the synthesis of bacterial cell wall peptidoglycan.  相似文献   

3.
A series of 2-amino-N-benzylpyridine-3-carboxnamides, 2-amino-N-benzylpyridine-3-sulfonamides and 2-amino-3-benzylthiopyridines against c-Met were designed by means of bioisosteric replacement and docking analysis. Optimization of the 2-amino-3-benzylthiopyridine scaffold led to the identification of compound (R)-10b displaying c-Met inhibition with an IC50 up to 7.7 nM. In the cytotoxic evaluation, compound (R)-10b effectively inhibited the proliferation of c-Met addictive human cancer cell lines (IC50 from 0.19 to 0.71 μM) and c-Met activation-mediated cell metastasis. At a dose of 100 mg/Kg, (R)-10b evidently inhibited tumor growth (45%) in NIH-3T3/TPR-Met xenograft model. Of note, (R)-10b could overcome c-Met-activation mediated gefitinib-resistance, which indicated its potential use for drug combination. Taken together, 2-amino-3-benzylthiopyridine scaffold was first disclosed and exhibited promising pharmacological profiles against c-Met, which left room for further exploration.  相似文献   

4.
A new series of N-phenylpyrrolecarbothioamides were obtained from base catalyzed intramolecular cyclization of 3-amino-3-(alkyl or arylamino)propenethioamides. Pyrrole derivatives were evaluated for their in vitro anticancer activity toward cell lines of nine different types of human cancer. Some of newly prepared compounds demonstrated inhibitory effects on the growth of a wide range of cancer cell lines generally at 10(-6) M level and in some case at 10(-8) M concentrations.  相似文献   

5.
Microtubules are among the most successful targets of compounds potentially useful for cancer therapy. A new series of inhibitors of tubulin polymerization based on the 2-amino-3-(3,4,5-trimethoxybenzoyl)-4,5,6,7-tetrahydrothieno[b]pyridine molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. The most promising compound in this series was 2-amino-3-(3,4,5-trimethoxybenzoyl)-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[b]pyridine, which inhibits cancer cell growth with IC(50)-values ranging from 25 to 90 nM against a panel of four cancer cell lines, and interacts strongly with tubulin by binding to the colchicine site. In this series of N(6)-carbamate derivatives, any further increase in the length and in the size of the alkyl chain resulted in reduced activity.  相似文献   

6.
Searching for a novel family of inactivators of the human DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) which is known to bind to the DNA minor groove, we have computationally modelled and synthesised two series of 2-amino-6-aryloxy-5-nitropyrimidines with morpholino or aminodiaryl substituents (potential minor groove binders) at the 4-position. Synthesis of these compounds was achieved by successive substitution of each of the two Cl atoms of 2-amino-4,6-dichloro-5-nitropyrimidine by the corresponding amino and aryloxy derivatives. Biochemical evaluation of these compounds as MGMT inactivators showed poor activities, but in general the 4-bromothenyloxy derivatives showed better inactivation than the benzyloxy versions. DNA binding assessment was not possible due to insolubility problems.  相似文献   

7.
8.
The production of petite mutations by different acridine analogs was studied in Saccharomyces cerevisiae. Compounds with amino substituents at the 2 and 3 positions of the acridine nucleus and methylation at position 10 were effective for petite induction in growing cells but not in resting cells, while those with chloro, nitro and methoxy substituents were not effective in either resting or growing cells.Photosensitive azido derivatives of the acridines were tested to evaluate the role of covalent drug attachment for mutagenesis in resting cells. Photolysis of resting cells with 9-azido, 3-azido-6-amino-, 9-azido-10-methyl-, or 3-azido- 6-amino-10-methyl-acridine was highly toxic. 3-Azido-6-amino-acridine, and especially 3-azido-10-methyl-, and 3-azido-6-amino-10-methyl-acridine, were effective petite inducers in resting cells. Thus, the photosensitive (azido) group at position 9 produced only cell killing while the azido group at position 3 and/or 6 led to effective petite induction in resting cells. In contrast, petite induction was observed only for growing cells, for dark control experiments with these compounds or with the monoazide precursor compounds.  相似文献   

9.
The importance of the adrenergic β-blockers with structure of (S) 1-aryloxy-3-amino-2-propanol in the treatment of different diseases has led the development of a variety of stereoselective synthetic methodologies for this stereoisomer. In this review we present several methodologies to obtain this compound using (i) chiral substrates, (ii) chiral catalysts (organometallic or enzymes) and (iii) preparative chiral chromatography, showing the advantages and disadvantages of each methodology.  相似文献   

10.
A series of 2-amino-4-m-bromoanilino-6-benzyl pyrrolo[2,3-d]pyrimidines analogues 412 were synthesized and evaluated as inhibitors of receptor tyrosine kinases (RTKs). These analogues were synthesized from the appropriate α-bromomethylbenzylketones via cyclocondensation with 2,6-diamino-4-pyrimidone to afford the 2-amino-4-oxo-6-substituted benzyl pyrrolo[2,3-d]pyrimidines. Chlorination at the 4-position followed by displacement with 3-bromoaniline or 3-bromo-N-methylaniline and methylation of the 7-NH afforded the target compounds. Remarkably, dimethylation of both the 4-N and N7 afford whole cell EGFR inhibitors that are more cytotoxic than clinically used erlotinib and mono-methylation at the 4-N or N7 affords more cytotoxic whole cell PDGFR-β inhibitors than clinically used sunitinib. Methylation at either the 4-N or N7 position was detrimental to whole cell VEGFR-2 inhibition. The inhibitory data against the RTKs in this study demonstrates that methylation of the 4-NH and/or the 7-NH influences both the specificity and potency of RTK inhibition.  相似文献   

11.
A series of novel 2,5,7-tricarbo-substituted indoles were prepared via sequential Sonogashira and Suzuki–Miyaura cross-coupling of 2-amino-5-bromo-3-iodoacetophenone with terminal acetylenes and aryl/styrylboronic acids followed by palladium chloride-mediated heteroannulation of the incipient 5-aryl/styryl-substituted 2-amino-3-(arylalkynyl)acetophenones. These polycarbo-substituted indole derivatives were evaluated for potential in vitro antiproliferative activity against the human breast adenocarcinoma (MCF-7) and human cervical cancer (HeLa) cell lines. Compounds 6f, 6i, 6k, 6m and 6n were found to exhibit significant cytotoxicity and selectivity against the HeLa cells. Compounds 6i and 6m were chosen as representative examples to evaluate their pro-apoptotic efficacy against the HeLa cell line. The compounds induced apoptosis through cell membrane alteration and DNA fragmentation caspase-dependent pathways.  相似文献   

12.
Pancreatic cancer is a highly malignant cancer of the pancreas with a very poor prognosis. Methylation of histone lysine residues is essential for regulating cancer physiology and pathophysiology, mediated by a set of methyltransferases (KMTs) and demethylases (KDMs). This study surveyed the expression of methylation regulators functioning at lysine 9 of histone 3 (H3K9) in pancreatic lesions and explored the underlying mechanisms. We analyzed KDM1A and KDM3A expression in clinical samples by immunohistochemical staining and searching the TCGA PAAD program and GEO datasets. Next, we identified the variation in tumor growth in vitro and in vivo after knockdown of KDM1A or KDM3A and explored the downstream regulators of KDM1A and KDM3A via RNA-seq, and gain- and loss-of-function assays. Eleven H3K9 methylation regulators were highly expressed in pancreatic cancer, and only KDM1A and KDM3A expression positively correlated with the clinicopathological characteristics in pancreatic cancer. High expression of KDM1A or KDM3A positively correlated with pathological grade, lymphatic metastasis, invasion, and clinical stage. Kaplan–Meier analysis indicated that a higher level of KDM1A or KDM3A led to a shorter survival period. Knockdown of KDM1A or KDM3A led to markedly impaired tumor growth in vitro and in vivo. Mechanistically, CCNA2, a cell cycle-associated gene was partially responsible for KDM1A knockdown-mediated effect and CDK6, also a cell cycle-associated gene was partially responsible for KDM3A knockdown-mediated effect on pancreatic cancer cells. Our study demonstrates that KDM1A and KDM3A are highly expressed in pancreatic cancer and are intimately correlated with clinicopathological factors and prognosis. The mechanism of action of KDM1A or KDM3A was both linked to the regulation of cell cycle-associated genes, such as CCNA2 or CDK6, respectively, by an H3K9-dependent pathway.  相似文献   

13.
A highly efficient method has been developed for the one-pot synthesis of substituted 3-amino-1H-indole and 3-amino-1H-7-azaindole derivatives starting from ethyl 2-cyanophenylcarbamate/ethyl 3-cyanopyridin-2-ylcarbamate, and α-bromoketones in good to excellent yields. All newly synthesized analogues were screened for their antiproliferative activities against four cancer cell lines. The most promising compound 8v demonstrated 13-, 5-, and 1.4-fold improvement compared to fluorouracil in inhibiting HeLa, HepG2, and MCF-7 cell proliferation with IC50 values of 3.7, 8.0, and 19.9 μM, respectively. Furthermore, 8v induced significant cell cycle arrest at the G2/M phase in HeLa cell lines via a concentration-dependent manner. These encouraging findings indicate that the common 3-amino-1H-7-azaindole is a very favorable scaffold for the design of novel anticancer small-molecule drugs.  相似文献   

14.
As an outgrowth of our program to explore 3-deazaadenine carbocyclic nucleosides, 3-bromo-3-deazaneplanocin (5) and 3-bromo-3-deazaaristeromycin (6) have been synthesized from a readily available cyclopentenol and cyclopentanone and either 4-amino- or 4-chloro-1H-imidazo[4,5-c]pyridine (6-amino- or 6-chloro-3-deazaadenine) in 5 steps and 7 steps, respectively. Antiviral analysis found 5 to display significant activity towards a number of (-)-ssRNA and a few dsDNA viruses. Compound 6 was less active than 5 against selected examples of those viruses affected by 5.  相似文献   

15.
REV3L, the catalytic subunit of DNA Polymerase ζ (Polζ), plays a significant role in the DNA damage tolerance mechanism of translesion synthesis (TLS). The role of REV3L in chemosensitivity of cervical cancer needs exploration. In the present study, we evaluated the expression of the Polζ protein in paraffin-embedded tissues using immunohistochemistry and found that the expression of Polζ in cervical cancer tissues was higher than that in normal tissues. We then established some cervical cancer cell lines with REV3L suppression or overexpression. Depletion of REV3L suppresses cell proliferation and colony formation of cervical cancer cells through G1 arrest, and REV3L promotes cell proliferation and colony formation of cervical cancer cells by promoting G1 phase to S phase transition. The suppression of REV3L expression enhanced the sensitivity of cervical cancer cells to cisplatin, and the overexpression of REV3L conferred resistance to cisplatin as evidenced by the alteration of apoptosis rates, and significantly expression level changes of anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2), myeloid cell leukemia sequence 1 (Mcl-1) and B-cell lymphoma-extra large (Bcl-xl) and proapoptotic Bcl-2-associated x protein (Bax). Our data suggest that REV3L plays an important role in regulating cervical cancer cellular response to cisplatin, and thus targeting REV3L may be a promising way to alter chemosensitivity in cervical cancer patients.  相似文献   

16.
The lipase catalyzed resolution of cis and trans-3-amino-4-hydroxytetrahydrofurans and cis-3-amino-4-hydroxypyrrolidines have been studied. For all the heterocycles, the best enantioselectivity was obtained using Candida antarctica lipases A and B as catalysts in hydrolytic processes. The absolute configuration of the optically pure obtained heterocycles has been assigned.  相似文献   

17.
The methyl ethers of 2-amino-2-deoxy-D-mannose are reference compounds in studies, by the methylation procedure, of the chemical structure of polysaccharides containing 2-amino-2-deoxy-D-mannose and 2-amino-2-deoxy-D-mannuronic acid residues. Methylation of methyl 2-acetamido-2-deoxy-α-D-mannopyranoside (1) gave the 3,4,6-trimethyl ether. Methylation of the 6-trityl ether of 1, followed by detritylation, gave the 3,4-dimethyl ether of 1. Methylation of the 4,6-O-benzylidene derivative (6) of 1, followed by removal of the benzylidene group, gave the 3-methyl ether of 1. Benzoylation of 6, followed by removal of the benzylidene group and monobenzoylation, gave the 3,6-dibenzoate of 1, which was methylated, and the product saponified, to give the 4-methyl ether of 1; the latter compound was also obtained by a similar route via the 3-O-acetyl-6-O-benzoyl derivative.  相似文献   

18.
In our previous work, a series of 2-amino-3,4-dihydroquinazoline derivatives using an electron acceptor group was reported to be potent T-type calcium channel blockers and exhibit strong cytotoxic effects against various cancerous cell lines. To investigate the role of the guanidine moiety in the 2-amino-3,4-dihydroquinazoline scaffold as a pharmacophore for dual biological activity, a new series of 2-thio-3,4-dihydroquniazoline derivatives using an electron donor group at the C2-position was synthesized and evaluated for T-type calcium channel blocking activity and cytotoxic effects against two human cancerous cell lines (lung cancer A549 and colon cancer HCT-116). Among them, compound 6g showed potent inhibition of Cav3.2 currents (83% inhibition) at 10 µM concentrations. The compound also exhibited IC50 values of 5.0 and 6.4 µM against A549 and HCT-116 cell lines, respectively, which are comparable to the parental lead compound KYS05090. These results indicate that the isothiourea moiety similar to the guanidine moiety of 2-amino-3,4-dihydroquinazoline derivatives may be an essential pharmacophore for the desired biological activities. Therefore, our preliminary work can provide the opportunity to expand a chemical repertoire to improve affinity and selectivity for T-type calcium channels.  相似文献   

19.
A series of 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines were prepared and evaluated as potential allosteric modulators at the A1 adenosine receptor. The structure–activity relationships of the 3- and 6-positions of a series of 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines were explored. Despite finding that 3- and 6-substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines possess the ability to recognize an allosteric site on the agonist-occupied A1AR at relatively high concentrations, the structural modifications we have performed on this scaffold favor the expression of orthosteric antagonist properties over allosteric properties. This research has identified 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as novel class of orthosteric antagonist of the A1AR and highlighted the close relationship between structural elements governing allosteric modulation and orthosteric antagonism of agonist function at the A1AR.  相似文献   

20.
Fibroblast growth factor receptor 1 (FGFR1) plays an important role in tumorigenesis and is therefore an attractive target for anticancer therapy. Using molecular docking approach we have identified inhibitor of FGFR1 belonging to 5-amino-4-(1H-benzoimidazol-2-yl)-phenyl-1,2-dihydro-pyrrol-3-ones with IC50 value of 3.5 μM. A series of derivatives of this chemical scaffold has been synthesized and evaluated for inhibition of FGFR1 kinase activity. It was revealed that the most promising compounds 5-amino-1-(3-hydroxy-phenyl)-4-(6-methyl-1H-benzoimidazol-2-yl)-1,2-dihydro-pyrrol-3-one and 5-amino-4-(1H-benzoimidazol-2-yl)-1-(3-hydroxy-phenyl)-1,2-dihydro-pyrrol-3-one inhibit FGFR1 with IC50 values of 0.63 and 0.32 μM, respectively, and posses antiproliferative activity against KG1 myeloma cell line with IC50 values of 5.6 and 9.3 μM. Structure–activity relationships have been studied and binding mode of this chemical class has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号