首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin-dependent kinase 2 (CDK2) plays a key role in eukaryotic cell cycle progression which could facilitate the transition from G1 to S phase. The dysregulation of CDK2 is closely related to many cancers. CDK2 is utilized as one of the most studied kinase targets in oncology. In this article, 24 benzamide derivatives were designed, synthesized and investigated for the inhibition activity against CDK2. Our results revealed that the compound 25 is a potent CDK2 inhibitor exhibiting a broad spectrum anti-proliferative activity against several human breast cancer cells. Additionally, compound 25 could block cell cycle at G0 or G1 and induce significant apoptosis in MDA-MB-468 cells. These findings highlight a rationale for further development of CDK2 inhibitors to treat human breast cancer.  相似文献   

2.
Motivated by the potential anticancer activity of both coumarin and 2-aminothiazole nuclei, a new set of thiazol-2-yl hydrazono-chromen-2-one analogs were efficiently synthesized aiming to obtain novel hybrids with potential cytotoxic activity. MTT assay investigated the significant potency of all the target compounds against the human cervical cancer cell lines (HeLa cells). Cell cycle analysis showed that the representative compound 8a led to cell cycle cessation at G0/G1 phase indicating that CDK2/E1complex could be the plausible biological target for these newly synthesized compounds. Thus, the most active compounds (7c and 8a-c) were tested for their CDK2 inhibitory activity. The biological results revealed their significant CDK2 inhibitory activity with IC50 range of 0.022–1.629 nM. Moreover, RT-PCR gene expression assay showed that compound 8a increased the levels of the nuclear CDK2 regulators P21 and P27 by 2.30 and 5.7 folds, respectively. ELISA tequnique showed also that compound 8a led to remarkable activation of caspases-9 and -3 inducing cell apoptosis. QSAR study showed that the charge distribution and molecular hydrophobicity are the structural features affecting cytotoxic activity in this series. Molecular docking study for the most potent cytotoxic compounds (7c and 8a-c) rationalized their superior CDK2 inhibitory activity through their hydrogen bonding and hydrophobic interactions with the key amino acids in the CDK2 binding site. Pharmacokinetic properties prediction of the most potent compounds showed that the newly synthesized compounds are not only with promising antitumor activity but also possess promising pharmacokinetic properties.  相似文献   

3.
A novel 6-aminopurine scaffold bearing an N9-cis-cyclobutyl moiety was designed using structure-based molecular design based on two known CDK inhibitors, dinaciclib and Cmpd-27. A series of novel 6-aminopurine compounds was prepared for structure–activity relationship (SAR) studies of CDK2 and CDK5 inhibitors. Among the compounds synthesized, compound 8l displayed potent CDK2 and CDK5 inhibitory activities with low nanomolar ranges (IC50 = 2.1 and 4.8 nM, respectively) and showed moderate cytotoxicity in HCT116 colon cancer and MCF7 breast cancer cell lines. Here, we report the synthesis and evaluation of novel 6-aminopurine derivatives and present molecular docking models of compound 81 with CDK2 and CDK5.  相似文献   

4.
HDAC and CDK inhibitors have been demonstrated to be synergistically in suppressing cancer cell proliferation and inducing apoptosis. In this work, we incorporated the pharmacophore groups of HDACs and CDKs inhibitors into one molecule to design and synthesize a series of purin derivatives as HDAC/CDK dual inhibitors. The lead compound 6d, showing good HDAC1 and CDK2 inhibitory activity with IC50 values of 5.8 and 56 nM, respectively, exhibited attractive potency against several cancer cell lines in vitro. This work may lead to the discovery of a novel scaffold and potential dual HDAC/CDK inhibitors.  相似文献   

5.
A fragment library screen was carried out to identify starting points for novel CDK8 inhibitors. Optimization of a fragment hit guided by co-crystal structures led to identification of a novel series of potent CDK8 inhibitors which are highly ligand efficient, kinase selective and cellular active. Compound 16 was progressed to a mouse pharmacokinetic study and showed good oral bioavailability.  相似文献   

6.
The discovery and optimization of a novel series of G9a/GLP (EHMT2/1) inhibitors are described. Starting from known G9a/GLP inhibitor 5, efforts to explore the structure-activity relationship and optimize drug properties led to a novel compound 13, the side chain of which was converted to tetrahydroazepine. Compound 13 showed increased G9a/GLP inhibitory activity compared with compound 5. In addition, compound 13 exhibited improved human ether-a-go-go related gene (hERG) inhibitory activity over compound 5 and also improved pharmacokinetic profile in mice (oral bioavailability: 17 to 40%). Finally, the co-crystal structure of G9a in complex with compound 13 provides the basis for the further development of tetrahydroazepine-based G9a/GLP inhibitors.  相似文献   

7.
A series of novel hybrid structure derivatives, containing both LEE011 and Cabozantinib pharmacophore, were designed, synthesized and evaluated. Surprisingly, a compound 4d was discovered that highly exhibited effective and selective activity of CDK9 inhibition with IC50 = 12 nM. It effectively induced apoptosis in breast and lung cancer cell lines at nanomolar level. Molecular docking of 4d to ATP binding site of CDK9 kinase demonstrated a new hydrogen bonding between F atom of 4-(3-fluorobenzyloxy) group and ASN116 residue, compared with the positive control, LEE011. The compound 4d could block the cell cycle both in G0/G1 and G2/M phase to prevent the proliferation and differentiation of cancer cells. Mice bared-breast cancer treated with compound 4d showed significant suppression of cancer with low toxicity. Taken together, this novel compound 4d could be a promising drug candidate for clinical application.  相似文献   

8.
9.
Emerging drug resistance and other drawbacks limit tubulin inhibitors’ therapeutic applications and developing novel tubulin inhibitors still attracts intensive efforts. We describe the discovery and structure–activity relationship study of a series of benzimidazole-2-urea derivatives as novel β tubulin inhibitors. The representative compound 6o potently suppressed the proliferation of a panel of human cancer cells (NCI-H460, Colo205, K562, A431, HepG2, Hela, MDA-MB-435S) with IC50 values of 0.040, 0.050, 0.006, 0.026, 1.774, 0.452 and 0.052 μM, respectively. Compound 6o obviously inhibited NCI-H460 spindles formation and induced cell cycle arrest at G2/M phase at 0.10 μM. Computational study suggested that 6o interacts with β tubulin in a novel binding mode. Our results suggested that benzimidazole-2-urea derivatives might be promising tubulin inhibitors with novel binding mode for further development.  相似文献   

10.
A series of novel chalcone linked imidazolones were prepared and evaluated for their anti-cancer activity against a panel of 53 human tumour cell lines derived from nine different cancer types: leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate and breast. Some of these hybrids (6, 7 and 8) showed good anti-cancer activity with GI50 values ranging from 1.26 to 13.9 μM. When breast carcinoma cells (MCF-7) were treated with 10 μM concentration of compounds TMAC, CA-4, 6 and 8 cell cycle arrest was observed in G2/M phase. Surprisingly, the increased concentration of the same compound to 30 μM caused accumulation of cells in G0/G1 phase of the cell cycle.  相似文献   

11.
Liriodenine is an aporphine alkaloid compound extracted from the leaves of Michelia compressa var. lanyuensis. It had been reported to have an anti-colon cancer effect, but the mechanism remains unclear. In the present study, the antiproliferative mechanisms of liriodenine were investigated in the human colon cancer SW480 cells. Flow cytometry analysis indicated that liriodenine notably induced the G1/S phase arrest. The G1/S phase cycle-related proteins analysis illustrated that the expressions of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6, and of cyclin D1 and A, as well as the phosphorylation of retinoblastoma tumor suppressor protein (ppRB) were found to be markedly reduced by liriodenine, whereas the protein levels of the CDK inhibitors (CKIs), p21 and p27 were increased. Moreover, the intracellular nitric oxide (NO) production, protein levels of inducible NO synthase (iNOS) and, p53 were increased. The p53 overexpression was a downstream event of NO production in liriodenine-induced G1/S-arrested SW480 cells, and the up-regulation of p21 and p27 was found to be mediated by a p53-dependent pathway. The inhibition of p53 by pifithrin-α (PFT-α), down-regulation of p21 and p27 by siRNA, or NO reduction by S-ethylisothiourea (ETU) entirely abolished the liriodenine-induced G1/S phase arrest. We concluded that liriodenine potently inhibited the cell cycle of SW480 cancer cells via NO- and p53-dependent G1/S phase arrest pathway. These results suggest that liriodenine might be a powerful agent against colon cancer.  相似文献   

12.
Pin1 (Protein interaction with never in mitosis A1) is a validated molecular target for anticancer drug discovery. Herein, we reported the design, synthesis, and structure-activity relationship study of novel ring A modified AKBA (3-acetyl-11-keto-boswellic acid) derivatives as Pin1 inhibitors. Most compounds showed superior Pin1 inhibitory activities to AKBA. One of the most promising compounds, 10a, potently inhibited Pin1 with IC50 value of 0.46?μM, while it displayed excellent anti-proliferative effect against prostate cancer cells PC-3 with GI50 value of 1.82?μM. Structure-activity relationship indicated that reasonable structural modifications in ring A had significant impact on improving activity. Further mechanism research revealed that 10a decreased the level of Cyclin D1 and caused cell cycle arrest at G0/G1 phase in PC-3 cancer cells. Thus, compound 10a may serve as potential anti-prostate cancer agent for further investigation through Pin1 inhibition.  相似文献   

13.
14.
Twenty-two novel indole-vinyl sulfone derivatives were designed, synthesized and evaluated as tubulin polymerization inhibitors. The physicochemical and drug-likeness properties of all target compounds were predicted by Osiris calculations. All compounds were evaluated for their antiproliferative activities, among them, compound 7f exhibited the most potent activity against a panel of cancer cell lines, which was 2–7 folds more potent than our previously reported compound 4. Especially, 7f displayed about 8-fold improvement of selective index as compared with compound 4, indicating that 7f might have lower toxicity. Besides, 7f inhibited the microtubule polymerization by binding to the colchicine site of tubulin. Further investigations showed that compound 7f effectively disrupted microtubule network, caused cell cycle arrest at G2/M phase and induced cell apoptosis in K562 cells. Moreover, 7f reduced the cell migration and disrupted capillary-like tube formation in HUVEC cells. Importantly, the in vivo anti-tumor activity of 7f was validated in H22 liver cancer xenograft mouse model without apparent toxicity, suggesting that 7f is a promising anti-tubulin agent for cancer therapy.  相似文献   

15.
The covalent binding nature of irreversible kinase inhibitors potentially increases the severity of “off-target” toxicity. Based on our continual strategy of chemically tuning the Michael addition acceptors, herein, we further explore the relationship among the electronic nature of Michael addition acceptors and EGFRT790M mutation selectivity as well as “off-target” toxicity balance. By perturbing the electronic nature of acrylamide moiety, compound 8a with a chloro-group at the α-position of the Michael addition acceptor was identified. It was found that 8a retained the excellent EGFR L858R/T790M potency (IC50 = 3.9 nM) and exhibited good anti-proliferative activities against the gefitinib-resistant NCI-H1975 cells (IC50 = 0.75 μM). Moreover, 8a displayed a significant EGFRWT selectivity and much weaker inhibitory activity against non-EGFR dependent SW620 cell and COS7. Preliminary study showed that 8a could arrest NCI-H1975 cells in G0/G1 phase. This work provides a promising chemical tuned strategy for balancing the mutant-EGFR potency and selectivity as well as “off-target” toxicity.  相似文献   

16.
Cyclin-dependent kinases 4/6 play an important role in regulation of cell cycle, and overexpress in a variety of cancers. Up to now, new CDK inhibitors still need to be developed due to its poor selectivity. Herein we report a novel series of 4-(2,3-dihydro-1H-benzo[d]pyrrolo[1,2-a]imidazole-7-yl)-N-(5-(piperazin-1-ylmethyl)pyridine-2-yl)pyrimidin-2-amine anologues as potent CDK 4/6 inhibitors based on LY2835219 (Abemaciclib). Compound 10d, which exhibits approximate potency on CDK4/6 (IC50?=?7.4/0.9?nM), has both good pharmacokinetic characters and high selectivity on CDK1 compared with LY2835219. Overall, compound 10d could be a promising candidate and a good starting point as anticancer drugs.  相似文献   

17.
Multitarget inhibitors design has generated great interest in cancer treatment. Based on the synergistic effects of topoisomerase and histone deacetylase inhibitors, we designed and synthesized a new series of acridine hydroxamic acid derivatives as potential novel dual Topo and HDAC inhibitors. MTT assays indicated that all the hybrid compounds displayed good antiproliferative activities with IC50 values in low micromolar range, among which compound 8c displayed potent activity against U937 (IC50?=?0.90?μM). In addition, compound 8c also displayed the best HDAC inhibitory activity, which was several times more potent than HDAC inhibitor SAHA. Subsequent studies indicated that all the compounds displayed Topo II inhibition activity at 50?μM. Moreover, compound 8c could interact with DNA and induce U937 apoptosis. This study provides a suite of compounds for further exploration of dual Topo and HDAC inhibitors, and compound 8c can be a new dual Topo and HDAC inhibitory anticancer agent.  相似文献   

18.
Prostate cancer is one of the most prevalent types of malignant cancers in men and has a high mortality rate among all male cancers. Previous studies have demonstrated that Sentrin/SUMO-specific protease 1 (SENP1) plays an important role in the occurrence and development of prostate cancer, and has been identified as a novel drug target for development of small molecule drugs against prostate cancer. In this paper, we used virtual screening and docking to identify compound J5 as a novel lead compound inhibiting SENP1, from SPECS library. We further investigated the SAR (structure–activity relationship) of the benzoate substituent of compound J5, and discovered compounds 8d and 8e as better small molecule inhibitors of SENP1. Both compounds are the high potent SENP1 small molecule inhibitors discovered up to date, and further lead optimization may lead to a series of novel anti-SENP1 agents. Further SAR studies are in process and will be reported in due course.  相似文献   

19.
Bromodomain-containing protein 4 (BRD4) is a key epigenetic regulator in cancer, and inhibitors targeting BRD4 exhibit great anticancer activity. By replacing the methyltriazole ring of the BRD4 inhibitor I-BET-762 with an N-methylthiazolidone heterocyclic ring, fifteen novel BRD4 inhibitors were designed and synthesized. Compound 13f had a hydrophobic acetylcyclopentanyl side chain, showing the most potent BRD4 inhibitory activity in the BRD4-BD1 inhibition assay (IC50 value of 110 nM), it also significantly suppressed the proliferation of MV-4-11 cells with high BRD4 level (IC50 value of 0.42 μM). Furthermore, the potent apoptosis-promoting and G0/G1 cycle-arresting activity of compound 13f were indicated by flow cytometry. As the downstream-protein of BRD4, c-Myc was in significantly low expression by compound 13f treatment in a dose-dependent manner. All the findings supported that this novel compound 13f provided a perspective for developing effective BRD4 inhibitors.  相似文献   

20.
Lowering the threshold of cellular senescence, the process employed by cells to thwart abnormal cell proliferation, though inhibition of CDK2 or Skp2 (regulator of CDK inhibitors) has been recently suggested as a potential avenue for cancer treatment. In this study, we employ a published mathematical model of G1/S transition involving the DNA-damage signal transduction pathway to conduct carefully constructed computational experiments to highlight the effectiveness of manipulating cellular senescence in inhibiting damaged cell proliferation. We first demonstrate the suitability of the mathematical model to explore senescence by highlighting the overlap between senescence pathways and those involved in G1/S transition and DNA damage signal transduction. We then investigate the effect of CDK2 deficiency on senescence in healthy cells, followed by effectiveness of CDK2 deficiency in triggering senescence in DNA damaged cells. For this, we focus on the behaviour of CycE, whose peak response indicates G1/S transition, for several reduced CDK2 levels in healthy as well as two DNA-damage conditions to calculate the probability (β) or the percentage of CDK2 deficient cells passing G1/S checkpoint ((1 - β) indicates level of senescence). Results show that 50% CDK2 deficiency can cause senescence in all healthy cells in a fairly uniform cell population; whereas, most healthy cells (≈67%) in a heterogeneous population escape senescence. This finding is novel to our study. Under both low- and high-DNA damaged conditions, 50% CDK deficiency can cause 65% increase in senescence in a heterogeneous cell population. Furthermore, the model analyses the relationship between CDK2 and its CKIs (p21, p27) to help search for other effective ways to bring forward cellular senescence. Results show that the degradation rate of p21 and initial concentration of p27 are effective in lowering CDK2 levels to lower the senescence threshold. Specifically, CDK2 and p27 are the most effective in triggering senescence while p21 having a smaller influence. While receiving experimental support, these findings specify in detail the inhibitory effects of CKIs. However, simultaneous variation of CDK2 and CKIs produces a dramatic reduction of damage cells passing the G1/S with CDK2&p27 combination causing senescence in almost all damaged cells. This combined effect of CDK2&CKIs on senescence is a novel contribution in this study. A review of the crucial protein complexes revealed that the concentration of active CycE/CDK2-p that controls cell cycle arrest provides support for the above findings with CycE/CDK2-p undergoing the largest reduction (over 100%) under the combined CDK2&CKI conditions leading to the arrest of most of the damaged cells. Our study thus provides quantitative assessments for the previously published qualitative findings on senescence and highlights new avenues for bringing forward senescence bar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号