首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Contrary to our expectations, soil salinity and moisture explained little of the spatial variation in plant establishment in the upper intertidal marsh of three southern California wetlands, but did explain the timing of germination. Seedlings of 27 species were identified in 1996 and 1997. The seedlings were abundant (maximum densities of 2143/m2 in 1996 and 1819/m2 in 1997) and predominantly annual species. CCAs quantified the spatial variation in seedling density that could be explained by three groups of predictor variables: (1) perennial plant cover, elevation and soil texture (16% of variation), (2) wetland identity (14% of variation) and (3) surface soil salinity and moisture (2% of variation). Increasing the spatial scale of analysis changed the variables that best predicted patterns of species densities. Timing of germination depended on surface soil salinity and, to a lesser extent, soil moisture. Germination occurred after salinity had dropped below a threshold or, in some cases, after moisture had increased above a critical level. Between 32% and 92% of the seedlings were exotic and most of these occurred at lower soil salinity than native species. However, Parapholis incurva and Mesembryanthemum nodiflorum were found in the same environments as the native species. In 1997, the year of a strong El Niño/Southern Oscillation event with high rainfall and sea levels, the elevation distribution of species narrowed and densities of P. incurva and other exotic species decreased but densities of native and rare species did not change. The ‘regeneration niche’ of wetland plant communities includes the effects of multiple abiotic and biotic factors on both the spatial and temporal variations in plant establishment.  相似文献   

2.
Plant species occupy distinct zones on coastal dunes, but the mechanisms limiting their distributions have not been fully explained. We combined field surveys of plant distributions and abiotic conditions with controlled germination experiments to assess the contribution of germination requirements to plant zonation. Species presence and abiotic conditions were measured in ten transects across the barrier dune at Waquoit Bay, Massachusetts. Germinating seeds of six species were exposed to four fully crossed treatments: pre-treatment (soaked in fresh water, soaked in salt water, or not soaked), temperature (low, moderate, or high), soil salinity (none, moderate, or high), and light (full light, shade, dark). Species distributions in the field were affected by both distance from the shore and presence of dominant shrubs. Germination tolerance of soil salinity reflected species zonation: species found on the front slope of the dune tolerated salinity, while germination of other species was limited by salinity alone or by salinity in combination with high temperature. Shrubs reduced soil surface temperature and decreased light, but these conditions had limited effects on germination. These results indicate that limitations to germination can contribute to explaining species distributions on coastal dunes.  相似文献   

3.
In seasonal climates, rainfall patterns are highly variable across years, and can control seed bank dependent regeneration. Here we asked how changing the timing and duration of the wet season would affect the germination of the soil seed bank of a 14-year-old seeder-dominated shrubland. Soil samples, subjected or not to a heat shock, simulating fire, were set to germinate in a chamber whose conditions (temperature and photoperiod) were successively changed to simulate autumn, winter, and spring. Irrigation was implemented to produce three wet season treatments, varying its timing and duration: long (14?weeks of irrigation, during autumn, winter, and spring), medium (8?weeks, late autumn to early spring) and short (4?weeks in winter). Wet season treatments significantly affected germination of shrubs and herbs, as well as species richness and diversity, whereby the later and shorter the season, the lower these variables. Dicots were more sensitive to the treatments than monocots. The timing of the wet season was also important, as similar significant differences were found when only the first 4 weeks of each simulated wet season treatment were considered; the later the season, the lower the germination and richness. Heating the soil generally increased germination but few significant effects were found. We document that a change in the timing and/or duration of the wet season can significantly affect soil seed bank germination. We discuss these results in a context of shifting rainfall patterns under climate change.  相似文献   

4.
Juncus acutus and J. maritimus are two colonizers of coastal marsh rangeland with worldwide distribution. We tested the effect of salt, temperature, and photoperiod on the germination capacity of seeds of the two Juncus from the Rhône delta (south of France). We measured the first day of germination, the mean time, speed, and rate of germination on seeds subjected to five salinity levels, three Dark–Light temperatures and two D-L photoperiods (12–12 and 10–14). The 10–14 D-L photoperiod, although it corresponds to one of the two main germination periods of J. acutus and J. maritimus in the northern Mediterranean, has never been previously used to study their germination capacity. Analyses showed significant effects of salinity and temperature on the germination parameters tested, and for these two factors we found results comparable to those of previous studies. Salinity slowed down and reduced the germination process while spring temperatures had a positive effect. A surprising result was obtained by changing the D-L photoperiod from 12–12 to 10–14 which then largely buffered the negative effect of salt and high temperatures on germination. This capacity of J. acutus and J. maritimus to withstand salty conditions during the germination phase due to the spring photoperiod could be decisive in the ability of both species to colonize saline environments.  相似文献   

5.
Aims Salt stress resulting from soil salinization is one of the driving forces of the land degradation throughout the world. The modern Yellow River delta is one of the most saline areas in China. Phytoremediation can be an effective way to restore the salinized ecosystems, which requires selecting appropriate plant species. This study explored the germination responses of common plant species from contrasting habitats in the Yellow River delta to varying salinity, offering experimental information for ecosystem restoration in the Yellow River delta.Methods In this study, 15 common plant species from the Yellow River delta were divided into two groups (high-salinity and low-salinity groups) by their natural habitats using Canonical Correlation Analysis. Seeds of each species were treated with five salinity levels (0, 5, 10, 20 and 30 ppt), using a randomized complete block design, and germinated seeds were counted and removed daily for 28 days to calculate the final germination proportion and mean time to germination. The germination responses of seeds to salinity treatments were compared between the two groups.Important findings In relation to salinity, seed germination behavior of the test species was closely related to the salinity level of the habitats over which they were distributed. Species from the habitats with higher salinity had generally higher final germination proportion but shorter mean time to germination than those from the habitats with lower salinity in all of five salinity treatments used. The final germination proportion and mean time to germination of low-salinity group species were more sensitive to salinity than those of high-salinity group species. Selecting the species with high final germination proportion and short mean time to germination is important for restoration of salinized land.  相似文献   

6.
Environmental factors affecting speed of germination and survival of naturally occurring seed of the legume Stylosanthes humilis and the grass Digitaria ciliaris were studied. Previous studies on the seedbed environment had shown that germination speed, defined as the proportion of seeds capable of germinating in the first 12 h period, was likely to be the most relevant laboratory measurement. Ten studies were conducted to compare species performance and to devise a standard technique for the measurement of germination speed under laboratory conditions. For S. humilis, the level and duration of submergence in water in the germination test had a large effect on germination speed (from 0–70% in 12 h). The absence of light delayed germination (7% in 12 h compared to 52% under light), but did not prevent complete germination over 7 days. Optimum temperature was 25°C with a decrease to 0% at 30°C. A standard technique was developed for measuring potential germination speed which gave reproducible results allowing differences in seed lots to be described. D. ciliaris seeds sampled just prior to field germination in the early storm period were less sensitive to environmental control. Temperature optimum for germination decreased from 40 to 30°C with the duration of the germination test. Seeds sampled at the time of seed dispersal (early dry season) had a high fraction (80%) requiring light for germination but this requirement had been lost by the early storm period. Investigations on the role of leaching (water movement) showed that long periods of water movement (12–18 h) increased the speed of germination of both species and in the case of S. humilis overcame environmental blocks to rapid germination (absence of light or 30°C temperature). Root elongation rates in S. humilis were not greatly affected by temperature over the range of seedbed temperatures when moisture is available (25–40°C) in the field. However, D. ciliaris was delayed in development at 25°C, the most likely overnight surface soil temperature. D. ciliaris was more susceptible to death by desiccation once germination had occurred compared to S. humilis. In both species seedling death due to desiccation increased with stage of development. The better relative performance of S. humilis in the germination-establishment phase of the life cycle, which had been observed in a previous study, could be explained by a qualitative comparison of the species' attributes. This suggested that D. ciliaris was more likely to germinate at rainfall events following which there was a greater chance of seedling death  相似文献   

7.
荒漠区冻融交替显著改变土壤温度和水分条件,并进一步影响荒漠植物种子萌发。为解析荒漠土壤冻融过程对植物种子萌发的影响,本研究以古尔班通古特沙漠4种典型短命植物[东方旱麦草(Eremopyrum orientale)、卵果鹤虱(Lappula patula)、尖喙牻牛儿苗(Erodium oxyrrhynchum)和条叶庭荠(Alyssum linifollum)]为对象,通过模拟不同温度和土壤水分及冻融循环次数对种子进行处理,对比分析冻融结束后4种植物种子萌发参数(发芽率、发芽势、发芽指数、种子活力)。结果表明,温度对4种植物种子萌发参数均无显著影响,而土壤水分和循环次数均有显著影响(水分仅对条叶庭荠无影响),且存在显著交互作用。冻融循环次数增加可促进冻融后的种子活力和种子萌发,尤其是在低水分条件下表现得更为显著。冻融期高土壤水分显著降低东方旱麦草的种子发芽率,对其他物种的影响受冻融次数和白天温度状况的调节。在相同土壤水分条件下,冻融期白天高温可促进种子萌发。总体来看,冻融对荒漠短命植物种子萌发有显著影响并存在一定的种间差异性,这将造成冻融期结束后不同物种的种子萌发和幼苗生长存在差异,进而影响荒漠区植物群落结构。  相似文献   

8.
1. Reduction in diversity of both freshwater aquatic and terrestrial ecosystems has been attributed to salinity increase and such increases are a symptom of changes to land use. Hydrological alteration to ground and surface water are likely to be associated with salinity increase and its influence on biodiversity. However the combined effects of salinity and hydrology on aquatic biodiversity have not been elucidated fully in either field or experimental situations. 2. The effect of salinity and water regime on the biota in sediments from seven wetlands from inland south‐eastern Australia was tested experimentally using germination of aquatic plant seeds (five salinity and two water levels) and emergence of zooplankton eggs (five salinity levels). Salinity levels were <300, 1000, 2000, 3000, 5000 mg L?1 and water regimes were damp (waterlogged) and submerged. 3. Aquatic plant germination and zooplankton hatching was not consistent for all seven wetland sediments. Four of the wetland sediments, Narran Lakes, Gwydir Wetlands, Macquarie Marshes and Billybung Lagoon showed similar responses to salinity and water regime but the other three wetland sediments from Lake Cowal, Great Cumbung Swamp and Darling Anabranch did not. 4. As salinity increased above 1000 mg L?1 there was a decrease in the species richness and the abundance of biota germinating or hatching from sediment from four of the wetlands. 5. Salinity had a particularly strong effect in reducing germination from sediments in damp conditions when compared to the flooded conditions. In parallel, salts accumulated in the sediment in damp conditions but did not in flooded conditions. 6. There is potential for increasing salinity in freshwater rivers and wetlands to decrease the species richness of aquatic communities and thus of the wetland community as a whole, resulting in loss of wetland biodiversity. This reduction in diversity varies between wetlands and is at least partly related to hydrology. For aquatic plants the reduction in diversity will be more marked for plants germinating from seed banks at the edges of wetlands where plants are not completely submerged than for the same seed bank germinating in submerged conditions.  相似文献   

9.
J. K. Bush 《Plant Ecology》2006,183(2):215-225
This study evaluated the relationships among soil moisture, soil salinity, and soil oxygen on the growth of Helianthus paradoxus (Asteraceae), a threatened inland salt marsh species of western North America. The study was conducted in large growth boxes (1×2×0.3 m) tilted at an angle to achieve a saturated to dry water gradient similar to that found in the marsh. This experimental design allowed the evaluation of major abiotic factors (soil moisture and soil salinity) which have been shown to be potentially important for this species, while removing major biotic factors, such as competition from other community dominants. Maximum aboveground biomass occurred in the middle rows of the boxes, where surface soil water was reduced and subsurface soil water was intermediate in the gradient. Regression analyses indicated that H. paradoxus would grow best where surface soil water is approximately 5%, subsurface soil water ranges from 20 to 30%, and where surface soil salinity is less than 0.5 g kg−1. Edaphic variables, particularly soil moisture and soil salinity, affect the growth of H. paradoxus. Data presented here suggest that the survival of this species depends on maintenance of the hydrologic regime.  相似文献   

10.
Seeds of the crisp lettuce cultivar Pennlake were germinated using all combinations of six ‘initial’ solutions of polyethylene glycol 6000 (PEG) with osmotic potentials ranging from 0 to -8 bars and seven ‘secondary’ solutions of PEG with osmotic potentials ranging from 0 to -10 bars, to which seeds were moved after 24 or 48 h in the ‘initial’ solution. The number of seeds germinating decreased at more negative osmotic potentials of both ‘initial’ and ‘secondary’ solutions but there was an interaction between germination temperature and the osmotic potential of the ‘initial’ solution. At an ‘initial’ solution osmotic potential of 0 bars germination at 20°C exceeded that at 10°C. As the osmotic potential of the ‘initial’ solution decreased germination at 20°C decreased more than at 10°C so that at the more negative osmotic potentials germination at 10°C exceeded that at 20°C. However seeds ungerminated after 14 days germinated normally when transferred back to water, so that the average final germination was 99.5%. The results suggest that major fluctuations in soil water potential in a seedbed are unlikely to influence seed germination per se provided that a period of 24 to 48 h at 0 bars tension is available at some time. The timing of such a period relative to sowing will have a considerable effect on the time of germination and hence the time of emergence. It is concluded that factors other than the direct effect of soil moisture content on germination are involved in reducing seedling emergence under fluctuating soil moisture conditions in the field.  相似文献   

11.
We examined the seed-germination responses of 27 alpine species with reference to habitat type (fellfield and snowbed), temperature (five regimes), and light requirement. About 70% of species showed >40% germination at warm temperatures without cold stratification. However, a moist-chilling treatment markedly improved the germination percentages in most species, especially under cool conditions. Thus, cold stratification effectively reduced the temperature requirement for germination. Patterns of germination response within species were not consistent between the fellfield and snowbed habitats for species inhabiting both habitats. For interspecific comparisons, there were no significant differences in germination responses to the temperature regimes and the cold stratification between the fellfield and snowbed species. Also, germination speed and the length of germinating period did not differ between fellfield and snowbed species. Most species (86%) showed a requirement for light for germination without cold stratification. Although the extent of the light requirement was reduced after cold stratification in some species, the light requirement of most small-seeded species remained. The combination of cold stratification and the light requirement is a major factor determining the seedling emergence and formation of seed banks in alpine plants. However, habitat-specific patterns of germination traits were less clear, suggesting similar germination traits in fellfield and snowbed plants, at least under controlled conditions in the laboratory.  相似文献   

12.
Seeds with efficient antioxidant defence system show higher germination under stress conditions; however, such information is limited for the halophyte seeds. We therefore studied lipid peroxidation and antioxidant responses of a leaf-succulent halophyte Salsola drummondii during seed germination under different salinity levels (0, 200 and 800 mM NaCl), temperature (10/20, 20/30 and 25/35°C) and light regimes. Seeds absorbed water and germinated in less than 1 h in non-saline control while increases in salinity decreased the rate of water uptake as well as seed germination. Non-optimal temperatures (10/20 and 25/35°C) and complete dark condition reduced seed germination in comparison to those seeds germinated under optimal temperature (20/30°C) and 12-h photoperiod, respectively. Generally, higher lipid peroxidation and antioxidant enzyme activities were observed in seeds at non-optimal temperature and in those seeds germinated in dark. Decrease in reduced ascorbic acid content was found in highest salinity and temperature treatments, while reduced glutathione content did not change significantly with changes in salinity, temperature and light regimes. These results indicate variation in temperature and light but not salinity enhances antioxidant enzyme activities in germinating seeds of Salsola drummondii.  相似文献   

13.
以百山祖自然保护区5 hm2永久样地150个幼苗监测站木本植物幼苗为研究对象,2008—2011年定期调查样方中幼苗的种类、数量、萌发、死亡等,探究亚热带中山常绿阔叶林幼苗种类组成、数量动态及其与生境的相关性。结果表明:1)百山祖样地在2008年至2011年出现的幼苗属于26科,40属,共53个物种,不同物种萌发时段有异;2)2009年样地幼苗存活比率为7.7%,2010年为-20.8%,2011年则是-0.3%,幼苗存活比率不高,种类和数量呈减少趋势;3)存活幼苗中有明显的优势物种,分别为光亮山矾(Symplocos lucida)、尖连蕊茶(Camellia cuspidata)、浙闽新木姜子(Neolitsea aurata var.undulatula)、尖叶菝葜(Smilax arisanensis)和短尾柯(Lithocarpus brevicaudatus),5个物种之和占幼苗总数比例50%;4)种子的萌发与生境有极显著的相关性,且与生境因子中水分关联最大;5)存活幼苗数与样站坡位、水分、落叶层厚度呈现显著相关性,水和光照是影响幼苗存活的主要因素。  相似文献   

14.
Summary In order to understand the vegetation dynamics of Sahelian rangelands, the effects of water availability on germination were investigated under controlled conditions in climate rooms. Mixtures of seeds from species that occur in the same habitats but have different seed characteristics were exposed to different watering treatments. Responses to the treatments in the climate room were comparable to those observed in the field situation. However, induction time was generally some-what longer, and in some cases the germination rate was lower. The size, frequency, and timing of showers decisively influenced the ratio between the proportions of the various species among the seedlings that established. In general, conditions were favourable for fast germinating species with rainfall patterns without serious intermittent periods of drought, whereas the conditions became favourable for the slower germinating species after dry periods had eliminated the seedlings of the fast germinating species. Large differences in drought resistance were found among seedlings of different species. This causes more differentiation in establishment of species. Seed losses during the pre-emergence phase were also important. These losses can be very high, especially for the fastest germinating species. The dynamics observed in field situations could be explained on the basis of germination characteristics and drought resistance.  相似文献   

15.
Seed viability and germination are key factors in the success of restoration efforts, especially when stored seeds are used. However, the effect of seed storage on germination of most of the native Arabian species is not well documented. We investigated the effect of storage time and role of the seed mucilage in regulating germination, dormancy, salinity tolerance and consequential survival strategy of F. aegyptia in an unpredictable arid desert setting. Effect of light and temperature during germination was studied under two photoperiods and two thermoperiods using intact and de-mucilaged seeds. Presence of mucilage and thermoperiod did not affect the germination. However, seed collection year and photoperiod had a highly significant effect on the germination. Increasing salinity levels decreased the germination of F. aegyptia but ungerminated seeds were able to germinate when salinity stress was alleviated. Seed storage at room temperature enhances the germination percentage, indicating that F. aegyptia seeds have physiological dormancy and it can be alleviated by after-ripening at dry storage. In addition, F. aegyptia seeds show ability to germinate at lower salinity concentration and remain viable even at higher saline conditions, indicating their adaptability to cope with such harsh environmental conditions.  相似文献   

16.
Reproductive timing is a critical life‐history event that could influence the (co)variation of traits developing later in ontogeny by regulating exposure to seasonally variable factors. In a field experiment with Arabidopsis thaliana, we explore whether allelic variation at a flowering‐time gene of major effect (FRIGIDA) affects (co)variation of floral traits by regulating exposure to photoperiod, temperature, and moisture levels. We detect a positive latitudinal cline in floral organ size among plants with putatively functional FRI alleles. Statistically controlling for bolting day removes the cline, suggesting that seasonal abiotic variation affects floral morphology. Both photoperiod and precipitation at bolting correlate positively with the length of petals, stamens, and pistils. Additionally, floral (co)variances differ significantly across FRI backgrounds, such that the sign of some floral‐trait correlations reverses. Subsequent experimental manipulations of photoperiod and water availability demonstrate direct effects of these abiotic factors on floral traits. In sum, these results highlight how the timing of life‐history events can affect the expression of traits developing later in ontogeny, and provide some of the first empirical evidence for the effects of major genes on evolutionary potential.  相似文献   

17.
Seven plant species including three chenopods:Suaeda fruticosa, Kochia indica, Atriplex crassifolia and four grasses:Sporobolus arabicus, Cynodon dactylon, Polypogon monspeliensis, Desmostachya bipinnata, varied greatly in their seed germination and growth responses to soil moisture or salinity. The germination percentage of each species was significantly lower at soil moisture level of 25 % of water holding capacity than at the levels ranging from 50 to 125 %. Increase in salinity resulted in gradual decrease in seed germination of each species. Growth responses of species to salinity varied widely from significant decrease with slight salinity to stimulation up to salinity levels of 20 dS m-2. Higher K+Na+ratios in plant shoots of all species compared to that in the root medium indicated selective K+uptake. Higher tolerance in chenopod species seems to be attendant on their ability for internal ion regulation. We are thankful to Mr. Noor Ahmad for his assistance in experimental work.  相似文献   

18.
Ephemeral wetland vegetation (EWV) in the Mediterranean Basin appears in temporary wetlands where favourable hydrological conditions exist only for a short time and year-to-year variability is high. Here, we report results of the seed germination, dormancy and desiccation tolerance of eight annual species living in this vulnerable habitat. Experiments were performed in laboratory conditions under constant and alternating temperatures and using a 12-h daily photoperiod or continuous darkness. Whilst germination and dormancy differed between the species, seeds demonstrated an absolute light requirement and prefer cool temperatures to germinate (mean ≤15 °C). Logistic regression analysis showed significant effects of alternating temperature in all the species except in Tillaea vaillantii whose germination was stimulated by constant temperature. Mean temperature was a significant term in the logistic models for the dormant species Cicendia filiformis, Linum radiola and T. vaillantii for which after-ripening was an effective dormancy-breaking treatment. From these results we infer three strategies of regeneration by seeds: (1) species germinating during the whole vegetative season (2) species germinating in a narrow temperature niche and (3) species requiring flooding (T. vaillantii). Seeds possessed orthodox storage behaviour (tolerating drying to 15 % relative humidity) and may be amenable to seed banking as a means of ex-situ conservation. We conclude that EWV species are adapted to the irregular presence of water with characteristics that are typical of neither truly aquatic nor wetland plants. These EWV species showed a more plastic germination response based on alternating and constant temperature sensitivity and a low proportion of dormant seeds.  相似文献   

19.
Biological soil crusts are common in many arid and semi-arid regions and they can alter microenvironments which are likely to directly and indirectly influence vascular plant establishment. The effect of biological soil crusts on germination is also influenced by the biological characteristics of the seeds themselves but rarely have the effects of both crust type and seed morphology on germination been examined in the same study. In this study, seed of five semi-arid woodland species with contrasting seed morphology were sown on top of patch types that commonly occur in natural woodlands (foliose lichen, short-turf moss, tree leaf litter, disturbed crust) and their emergence was followed. Percent germination varied between patch types and, for the largest-seeded species (Maireana excavata), final germination was significantly lower on the biological soil crust and litter patch types because they strongly acted as a physical barrier to seed penetration into the soil. The remaining four species showed no significant differences in final percent germination with patch type because most seeds either completely or partially penetrated the surface layer. Germination time courses, however, showed that biological soil crusts delayed the timing of germination of these species. Hence, soil crusts might differentially affect the spatial patterning of species in semi-arid woodlands by their subtle influence on seedling emergence that is determined by differences in seed morphology and subsequent positioning within crusts.  相似文献   

20.
Thermoinhibition is the decline in germinability within a seed population as soil temperatures increase above the optimum for germination. Hydrothermal time (HTT) models have been developed that describe the thermoinhibition response as a function of increases in the threshold water potential for seed germination [seed base water potential, Ψ(b) (G)]. Although these models assume a normal distribution of Ψ(b) (G) and a linear upward shift in Ψ(b) (G) with increasing temperature, little research has tested these assumptions. Using germination data obtained from four unrelated plant species, we fitted HTT models that use the Weibull and normal distribution to describe Ψ(b) (G) and compared the accuracy and bias of these two HTT models. For all four species, Ψ(b) (G) and germination were more accurately described by the Weibull than the normal distribution HTT model. At supra-optimal temperatures, Ψ(b) (G) of the earliest germinating seeds showed little thermoinhibition effect so that the seeds germinated very rapidly under moist conditions. However, for the rest of the population, Ψ(b) (G) increased progressively in response to supra-optimal temperatures so that the slower germinating seeds were thermoinhibited. The fitted HTT models reveal aspects of seed thermoinhibition that appear to have adaptational value under variable conditions of soil temperature and moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号