首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Evidence shows that pollinator abundance has declined and, consequently, so has their services, which has possible negative impacts on ecosystem functioning. The goal of this study was to evaluate the influence of landscape context at multiple spatial scales on the abundance of bee pollinators of tomato crops in Brazil. Pollinator abundance was obtained from tomato crops grown in a conventional system in the Cerrado region. Around each tomato field circular buffers of 0.75, 1, 1.5, 2, and 3 km radius were defined. Inside each buffer the landscapes were manually classified into native and non-native cover and, the proportion of native vegetation, the relative largest patch size, and the distance of the nearest native vegetation to each field were calculated. Pollinator species were categorized into five groups: Exomalopsis, Centris, Bombus/Eulaema, Halictidae, and all buzz pollinators combined (Buzzers). The results showed that the landscape context influenced the abundance of the five groups of tomato pollinators. Bees with a smaller body size, such as Exomalopsis spp., responded at smaller scales, while bees with a larger body size, such as the Centris and Bombus/Eulaema groups, responded at larger scales. The abundance of all pollinator groups increased with native vegetation cover. Most groups showed higher abundances in landscapes with similar-size fragments. The results reinforce the recommendation for maintaining natural habitats around crop areas, even if fragmented, for the conservation of the tomato pollinator assemblage. These findings are valuable for planning landscape management in the studied area to improve bee conservation, ecosystem services, and food production.  相似文献   

2.
In Central Europe, the genus Platanthera traditionally comprised two species, P. chlorantha Cust. ex Rchb. (Pc) and P. bifolia (L.) Rich. (Pb). They are morphologically characterized by a wide and narrow separation of anthers, respectively. However, a third form with intermediate anther distance has repeatedly been hypothesized but only hesitantly accepted. In addition, intermediate morphology has been also used as the main character of P. × hybrida. However, the status of some purported hybrid populations is challenged by the local lack of parental species, their successful reproduction and non-intermediate traits. Despite this unclear situation, detailed genetic and morphological analyses are lacking. Here, we studied morphology and molecular markers within the P. chlorantha/bifolia group in Central Europe. Three morphological groups emerged representing Pc, Pb and a third form, here informally referred to as non-hybrid intermediates (Pn). The latter is characterized, among other trait differences, by intermediate distance between anthers [(0.7)–1–2.2 mm] and long spurs (28–40 mm). Three gene pools were identified, which largely corresponded to the three morphological groups. The Pn gene pool had several high-frequency private alleles substantiating its genetic independence. Some of the Pn populations were previously interpreted as P. × hybrida suggesting that Pn was overlooked hitherto and mistaken to represent hybrids. The non-perfect fit between morphological and genetic groups highlights the potential for fast morphological evolution. Overall, the finding of three distinct lineages within the bifolia/chlorantha group necessitates a thorough reanalysis of reported taxa and a reevaluation of our understanding of their distribution, ecology and evolution.  相似文献   

3.
Increased fire frequency can significantly erode both soil properties and plant–pollinator interactions affecting plant reproductive success but they have seldom been assessed simultaneously. Here, we evaluate soil properties, pollinator assemblage and the reproductive success of two native Fabaceae herbs, Desmodium uncinatum and Rhynchosia edulis, growing in unburned, low and high fire frequency sites of Chaco Serrano across two consecutive years. Desmodium uncinatum is outcrossing with a high dependence on pollinators, whereas R. edulis is autogamous and completely independent of pollinators. We found that soil water content, nitrates and electrical conductivity significantly decreased in low and high fire frequency sites. Pollinator richness and composition visiting each plant species was similar across all fire frequency scenarios. However, fruit set of the exogamous D. uncinatum was strongly reduced in frequently burned sites, whereas fruit set of the autogamous R. edulis showed no significant changes. In both species, the probability of setting fruits was positively related to soil quality across fire frequency scenarios, implying that decreased reproduction was mainly driven by limitation of abiotic resources shaped by increased fire frequency. Because the pollinator-dependent D. uncinatum has a higher reproductive cost, reduced soil quality induced by fire frequency had stronger effects on its reproduction. Chronic reduction of sexual reproduction in frequently burned sites with depleted soils will limit population recruitment with negative consequences on long-term plant population persistence.  相似文献   

4.
Reproductive success of plants may be affected by interactions with co-flowering species either negatively, through competition for pollinators, or positively, by means of a magnet species effect and floral mimicry. In this study, potential interactions between Iris tuberosa, a rewarding species, and Ophrys fusca, a sexually deceptive orchid, were explored in four populations in southern Italy. In each population plots showing different ratios of the examined species were arranged in the field, and in each plot the number of pollinators and fruit set were assessed. In addition, flower size and floral hydrocarbons produced by the two species were analysed. Morphological and scent data pointed out that flower size and aliphatic compounds did not differ significantly between the two species. Interestingly, both species shared tricosane and 11-nonacosene, electrophysiologically active compounds in the shared dominant pollinator Adrena. We have found that fruit production and number of pollinators in I. tuberosa varied significantly among plots, while percentage of capsules and number of pollinators of O. fusca captured showed no significant differences across plots. These results suggested, that the presence of O. fusca contributes differentially to pollinator attraction, and thus, to total reproductive success of I. tuberosa, according to a different ratio of aggregation. These findings suggest that I. tuberosa profits from the greater abundance of insects attracted by the presence of orchid specimens, and that a sexually deceptive orchid may be a magnet species in pollination strategy.  相似文献   

5.

Background and Aims

Plant–pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia.

Methods

Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population.

Key Results

Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site.

Conclusions

The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts.  相似文献   

6.
Primary successions of glacier forelands are unique model systems to investigate community dynamics and assembly processes. However, successional changes of plant and insect communities have been mainly analysed separately. Therefore, changes in plant–insect interactions along successional gradients on glacier forelands remain unknown, despite their relevance to ecosystem functioning. This study assessed how successional changes of the vegetation influenced the composition of the flower-visiting insect assemblages of two plant species, Leucanthemopsis alpina (L.) Heyw. and Saxifraga bryoides L., selected as the only two insect-pollinated species occurring along the whole succession. In addition, we investigated the links between reproductive output of these plants and pollinator abundance through experimental exclusion of pollinators. Plant community structure changed along the succession, affecting the distribution and the abundance of insects via idiosyncratic responses of different insect functional groups. L. alpina interacted with ubiquitously distributed pollinators, while S. bryoides pollinators were positively associated with insect-pollinated plant species density and S. bryoides abundance. With succession proceeding, insect assemblages became more functionally diverse, with the abundance of parasitoids, predators and opportunists positively related to an increase in plant cover and diversity. The reproductive output of both plant species varied among successional stages. Contrary to our expectation, the obligate insect-pollinated L. alpina showed a reproductive output rather independent from pollinator abundance, while the reproductive output of the self-fertile S. bryoides seemed linked to pollinator abundance. Observing ecological interactions and using functional traits, we provided a mechanistic understanding of community assembly processes along a successional gradient. Plant community diversity and cover likely influenced insect community assembly through bottom-up effects. In turn, pollinators regulate plant reproductive output through top-down control. We emphasise that dynamics of alpine plant and insect communities may be structured by biotic interactions and feedback processes, rather than only be influenced by harsh abiotic conditions and stochastic events.  相似文献   

7.
Pollinator species are widely accepted as an important factor in plant reproductive isolation. Although mostly investigated in plants visited by different groups of pollinators (e.g., hummingbirds vs bees), few studies have examined the role of pollinators belonging to the same taxonomic group (e.g., only bees) on plant reproductive isolation. In this study, we investigate this question by evaluating pre- and post-zygotic mechanisms putatively involved in the reproductive isolation of two oil-rewarding sympatric Calceolaria species (i.e., Calceolaria filicaulis and C. arachnoidea) in an Andean ecosystem of Chile. We estimated reproductive isolation values using a combination of field (pollinator visitation rates) and experimental (intra and interspecific manual cross-pollination and seed germination of parents and hybrids) evidence. The two Calceolaria species were preferentially visited by different oil-collecting bee species. Results from hand cross-pollination experiments indicate that intraspecific crossings produced significantly more seeds than interspecific ones. Notwithstanding, seed germination essays did not reveal differences between parental and hybrids. Taken together, these results suggest that pollinator species are responsible for most of the reproductive isolation in the two Calceolaria species studied here. This study is the first assessment of pollinator-mediated reproductive isolation in Calceolaria species and the first to document reproductive barriers in oil-rewarding plants.  相似文献   

8.
We investigated flowering phenology, pollinator visitation and visitor community composition in communities of self-incompatible sympatric Primula species in a high-elevation Himalayan ecosystem. Within the tight constraints imposed by short growing seasons in such ecosystems, interactions among co-occurring plants for pollinators may vary from competition to facilitation, depending on the specifics of the system. We found that pollinator community composition changed with elevation in this system: lepidopterans were the dominant visitors at lower elevations (2200–3000 masl), bees (other than bumblebees) dominated at mid-elevations (3000–3800 masl) and bumblebees dominated at higher elevations (3800–4600 masl). However, within an elevation zone, there were no significant differences in pollinators amongst co-occurring Primula species. At a focal study site where multiple Primula species co-occurred, our results showed that even while the overall flowering periods of these species broadly overlapped, the peak flowering periods of different Primula species were temporally segregated. Upon further inferring the nature of interaction amongst co-flowering Primula species, we found that plots with higher Primula diversity (≥?2 species) and density (80–100 individuals) experienced significantly higher pollinator visitation, compared with plots with single species and low flower densities (40–50 individuals). Our results suggest that in this community of sympatric, self-incompatible Primula species, a broadly aggregated, synchronous floral display of multiple species results in pollinator facilitation by attracting a greater number of pollinator visitors. Within this broadly synchronous display, the temporal segregation of peak flowering period of individual species may reduce competition for pollinators and limit heterospecific pollen transfer.  相似文献   

9.
Twenty-five years ago, Arctomecon humilis, a pollinator-dependent, endangered poppy globally restricted to the extreme northeastern Mojave Desert in southwestern Utah, was pollinated by native bee species and the European honey bee. Follow-up studies beginning in 2012 failed to find the two most important native bee pollinator species, one of which, Perdita meconis, is a strict poppy specialist. We had four objectives: (1) confirm the status of formerly important native bee pollinators; (2) determine the role of the Africanized honey bee which reportedly invaded southern Utah in 2008; (3) examine the effect of the ostensible change in pollinator fauna on fruit set in four populations; (4) describe the pollination proficiency of species that presently visit poppy flowers. For the fourth consecutive survey, P. meconis was absent; its local extinction in Utah now seems certain. Another previously important native pollinator, Eucera quadricincta, was very rare. Also uncommon was the European honey bee, having been largely replaced by Africanized honey bees which have become, in most populations, the prevalent pollinator. Africanized bees forage early in the day and quickly strip flowers of their copious pollen leaving little for native bees. We argue that the invasion of southern Utah by Africanized bees is the most likely cause of the severe disruption of the A. humilis pollination system. The ascension of the Africanized bee is also associated with reduced fruit set in all poppy populations, especially those where plants are sparse. Arctomecon humilis now appears to depend mostly on an invasive species for pollination.  相似文献   

10.
Pollinators provide a key service to both natural and agricultural ecosystems. Little is reported on the pollination chemoecology of Stevia rebaudiana (Asteraceae), a hermaphroditic species producing self-incompatible florets in small corymbs. We investigated the chemistry of volatiles potentially involved in its pollination system. The VOCs emitted by the corymbs of 27 F1 open-pollinated genotypes were collected by solid-phase micro-extraction and analyzed by gas chromatography–mass spectrometry (GC–MS), as well as morphometric data of the genotypes were recorded. Finally, we quantified the abundance of pollinators for each genotype. S. rebaudiana flowers were mainly visited by bees (Apidae and Halictidae), followed by hoverflies (Diptera: Syrphidae). GC–MS indicated that S. rebaudiana was characterized by a complex scent profile with large variability among F1 plants. Discriminant analysis showed that limonene, δ-elemene and bicyclogermacrene were the compounds explaining most of the scent bouquet difference between high attractive (>40 pollinators/plant) from low attractive pollinator power (<40 pollinators/plant). Limonene was the most representative VOC among plants that are more attractive to pollinators, while high emissions of δ-elemene and bicyclogermacrene were linked to plants that are less attractive to pollinators. S. rebaudiana morphometric data highlighted that, besides floral VOCs, corymb abundance and size, as well as plant height, may route pollinator visits. Overall, this study adds knowledge on floral phenology and pollinator ecological traits of S. rebaudiana, allowing a deeper understanding of its chemical ecology and pollination.  相似文献   

11.
Floral rewards do not only attract pollinators, but also herbivores and their predators. Ants are attracted by extrafloral nectaries (EFNs), situated near flowers, and may interfere with the efficiency and behaviour of pollinators. We tested the hypothesis that the impacts of ant–pollinator interactions in plant–pollinator systems are dependent on (1) the seasonal activity of EFNs, which increase ant abundance closer to flowers; (2) consequently, an ant effect, where ants decrease the temporal niche overlap of bees due to predator avoidance; and (3) ant density, where higher densities may negatively affect plant–pollinator interactions and plant performance. We studied two ant–plant–pollinator systems based on Banisteriopsis campestris and Banisteriopsis malifolia plant species. The periods of high ant abundance coincided with plant species blooming. The presence of ants around flowers reduced the visitation rates of the smaller bees and the temporal niche overlap between bee species was not higher than randomly expected when ants had free access. Additionally, we observed variable ant effects on fruit set and duration of bee visits to both Malpighiaceae species when ant density was experimentally kept constant on branches, especially on B. campestris. Our goal was to show the dual role of ant density effects, especially because the different outcomes are not commonly observed in the same plant species. We believe that reduced temporal niche overlap between floral visitors due to ant presence provides an opportunity for smaller bees to improve compatible pollination behaviour. Additionally, we concluded that ant density had variable effects on floral visitor behaviours and plant reproductive performance.  相似文献   

12.
Floral scent is a key mediator in many plant–pollinator interactions. It is known to vary not only among plant species, but also within species among populations. However, there is a big gap in our knowledge of whether such variability is the result of divergent selective pressures exerted by a variable pollinator climate or alternative scenarios (e.g., genetic drift). Cypripedium calceolus is a Eurasian deceptive lady’s-slipper orchid pollinated by bees. It is found from near sea level to altitudes of 2500 m. We asked whether pollinator climate and floral scents vary in a concerted manner among different altitudes. Floral scents of four populations in the Limestone Alps were collected by dynamic headspace and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). Flower visitors and pollinators (the subset of visitors with pollen loads) were collected and identified. Preliminary coupled gas chromatographic and electroantennographic measurements with floral scents and pollinators revealed biologically active components. More than 70 compounds were detected in the scent samples, mainly aliphatics, terpenoids, and aromatics. Although several compounds were found in all samples, and all samples were dominated by linalool and octyl acetate, scents differed among populations. Similarly, there were strong differences in flower visitor spectra among populations with most abundant flower visitors being bees and syrphid flies at low and high altitudes, respectively. Pollinator climate differed also among populations; however, independent of altitude, most pollinators were bees of Lasioglossum, Andrena, and Nomada. Only few syrphids acted as pollinators and this is the first record of flies as pollinators in C. calceolus. The electrophysiological tests showed that bees and syrphid flies sensed many of the compounds released by the flowers, among them linalool and octyl acetate. Overall, we found that both floral scent and visitor/pollinator climate differ among populations. We discuss whether interpopulation variation in scent is a result of pollinator-mediated selection.  相似文献   

13.
While interactions between invaders and resident species have received a great deal of attention recently, the role of mutualists in facilitating or constraining invasions is rarely considered. We investigated the reproductive ecology of two closely related, woody legumes, Cytisus scoparius (Scotch broom) and Genista monspessulana (French broom), invading the same sites. Both species are considered noxious non-native weeds in California, and are considered to be ecologically similar, but Genista has much smaller flowers than Cytisus. Neither species showed appreciable levels of autogamous selfing. When experimentally self-pollinated, Genista demonstrated less depression of fruit set and seed set relative to outcrossed flowers than did Cytisus. At two sites on the Marin peninsula, Calif., Genista flowers were consistently less likely to be pollinated than Cytisus flowers. Genista was significantly pollen limited at both sites, while Cytisus was pollen limited at only the site with lower visitation rates. In the three populations with demonstrable pollen limitation, we found a significant relationship between fruit production and natural pollinator visitation at the level of the individual plant. However, we did not find that overall patterns of fecundity were strongly predicted by differences in pollen limitation between species or between sites. While a previous study found a tight link between patterns of pollinator visitation and patterns of reproduction in Cytisus in Washington State, we conclude that a more complex and variable environment (in terms of resources, herbivores, and florivores) on the Marin Peninsula de-coupled the relationship between pollinators and fruit production in these invaders. Our results suggest that the role of mutualisms in promoting or constraining invasions is likely to vary considerably among invaded communities.  相似文献   

14.

Background

Obligate pollination mutualisms (OPMs) are specialized interactions in which female pollinators transport pollen between the male and female flowers of a single plant species and then lay eggs into those same flowers. The pollinator offspring hatch and feed upon some or all of the developing ovules pollinated by their mothers. Strong trait matching between plants and their pollinators in OPMs is expected to result in reciprocal partner specificity i.e., a single pollinator species using a single plant species and vice versa, and strict co-speciation. These issues have been studied extensively in figs and fig wasps, but little in the more recently discovered co-diversification of Epicephala moths and their Phyllanthaceae hosts. OPMs involving Epicephala moths are believed occur in approximately 500 species of Phyllanthaceae, making it the second largest OPM group after the Ficus radiation (>?750 species). In this study, we used a mixture of DNA barcoding, genital morphology and behavioral observations to determine the number of Epicephala moth species inhabiting the fruits of Breynia oblongifolia, their geographic distribution, pollinating behavior and phylogenetic relationships.

Results

We found that B. oblongifolia hosts two species of pollinator that co-occurred at all study sites, violating the assumption of reciprocal specificity. Male and female genital morphologies both differed considerably between the two moth species. In particular, females differed in the shape of their ovipositors, eggs and oviposition sites. Phylogenetic analyses indicated that the two Epicephala spp. on B. oblongifolia likely co-exist due to a host switch. In addition, we discovered that Breynia fruits are also often inhabited by a third moth, an undescribed species of Herpystis, which is a non-pollinating seed parasite.

Conclusions

Our study reveals new complexity in interactions between Phyllantheae and Epicephala pollinators and highlights that host switching, co-speciation and non-pollinating seed parasites can shape species interactions in OPMs. Our finding that co-occurring Epicephala species have contrasting oviposition modes parallels other studies and suggests that such traits are important in Epicephala species coexistence.
  相似文献   

15.
Exclusivity of pollinators, temporal partitioning of shared pollinators and divergence in pollen placement on the shared pollinators’ bodies are mechanisms that prevent interspecific pollen flow and minimize competitive interactions in synchronopatric plant species. We investigated the floral biology, flower visitors, pollinator effectiveness and seasonal flower availability of two syntopic legume species of the genus Vigna, V. longifolia and V. luteola, in ‘restinga’ vegetation of an island in southern Brazil. Our goal was to identify the strategies that might mitigate negative consequences of their synchronous flowering. Vigna longifolia and V. luteola were self-compatible, but depended on pollinators to set seeds. Only medium to large bees were able to trigger the ‘brush type’ pollination mechanism. Vigna longifolia, with its asymmetrical corolla and hugging mechanism, showed a more restrictive pollination system, with precise sites of pollen deposition/removal on the bee’s body, compared to V. luteola, with its zygomorphic corolla and cymbiform keel. There was a daily temporal substitution in flower visitation by the main pollinators. Vigna longifolia and V. luteola had overlapping flowering phenology but the densities of their flowers fluctuated, resulting in a seasonal partitioning of flower visitation. The differences in corolla symmetry and mainly the temporal partitioning among pollinators throughout the day and the flowering season proved to be important factors in maintaining the synchronopatry of V. longifolia and V. luteola.  相似文献   

16.
Flowering invasive plants can have dramatic effects on the resource landscape available to pollinators. Because many pollinators exhibit behavioral plasticity in response to competitor or resource density, this in turn can result in impacts on ecological processes such as pollination and plant reproduction. We examine how interactions between five common generalist eusocial bees change across an invasion gradient by examining how bee abundance and diet overlap changed with variation in both invasive plant abundance and competitor abundance in a temperate oak-savannah ecosystem. Specifically we focus on the bumblebees Bombus bifarius, B. mixtus, B. melanopygus and B. vosnesenskii, as well as the non-native honeybee Apis mellifera, and their interactions with the native flowering plants Camassia quamash, Camassia liechtlinii, and the invasive shrub Cytisus scoparius. We further examine whether changes in pollinator visits to the invasive and two common native plants can explain changes in diet overlap. Abundance of the invasive plant and other common floral resources had strong impacts on focal bee abundance, with certain species more likely to be present at highly invaded sites. This may be because highly invaded sites tended to be embedded in forested landscapes where those bees are common. Diet overlap was most affected by abundance of a common native plant, rather than the invasive plant, with diet overlap increasing non-linearly with abundance of the native plant. Furthermore, Apis mellifera, did not appear to have direct competitive effects on native bumblebees in this habitat. However, visit patterns suggest that bees most abundant at highly invaded sites may compete for access to native resources. Thus the impacts of this invasive plant on our focal bee species may be primarily indirect, via its’ competitive effects on native plants.  相似文献   

17.
When alien pollinator species enter a native community of pollinators in which resource partitioning has been established, the pollination network between plants and pollinators may be modified through the interactions between the pollinators over the use of floral resources. We observed the floral-use patterns of native (Bombus hypocrita and B. deuteronymus) and alien (B. terrestris) bumblebee species in a coastal grassland in northern Japan. We analyzed the factors determining resource partitioning patterns. B. hypocrita tended to visit flowers with shallow or wide open corollas, such as Rosa rugosa, whereas B. deuteronymus visited flowers with complex or deeper corollas, such as Lathyrus japonicus. Given the wider floral preference of B. terrestris, floral use by the alien bumblebees consistently overlapped with that of native bumblebees. The visitation of B. terrestris to R. rugosa flowers was positively correlated with that of B. hypocrita. These bumblebee species frequently used similar floral resources, in part because of the large overlap in the seasonality of their foraging activity. The visitation frequency of B. deuteronymus to L. japonicus flowers was independent of the visitation frequency of other bumblebee species. The major visitation periods of the bumblebees to L. japonicus flowers reciprocally differed between B. deuteronymus and B. terrestris, suggesting phenological resource partitioning between these species. Our study suggests that phenological niche partitioning is more common in specialized flowers (L. japonicus) than in generalized flowers (R. rugosa).  相似文献   

18.
Males of solitary bees usually spend the night out of the nests. In the middle or late afternoon, they stop the patrolling behavior and move on to their sleeping places. Usually, they hang with the mandibles on small branches of the vegetation or stay inside flowers until the next day. We report the sleeping places of males of four Tapinotaspidini species on flowers of six plant species of four families. Flowers of three Iridaceae species were the most sought by males, especially flowers of Sisyrinchium scariosum which show high synchrony between anthesis and activity period of Lanthanomelissa discrepans males. Moreover, S. scariosum flowers are the most visited by females of L. discrepans which are the main pollinators; however, the role of the males as pollinators is unclear. Similar situation is evident for the interaction between males of Arhysoceble picta and Cuphea glutinosa (Lythraceae), where the males take nectar and may act as pollinators, like their females. We believe the plants are indirectly benefited by these interactions through the maintenance of the male populations of the pollinator bee species.  相似文献   

19.
The diversity and abundance of insect pollinators are declining. This decline reduces the potential ecosystem services of pollination for wild and cultivated plants. Specific agri-environment schemes (AES) are subsidised to support and conserve biodiversity in farmlands. In Belgium, the pollinator flower-strips AES, strips of flower-rich hay meadows, has been promoted as a potential scheme to increase pollinator abundance and diversity, even if their effectiveness has not been locally evaluated. The main objective of this research is to assess the capacity of pollinator-strip AES to provide flower-resources to diverse pollinators. During 2 years, we monthly measured the availability of flower resources (pollen and nectar) produced on four flower-strips surrounded by intensive farming in Belgium. We counted and identified insects that visited these flowers, and we constructed the plant–insect interactions networks. The pollinator-strip AES presented a mix of both sown and spontaneous plant species. The ten sown plant species were all present, even after 8 years of strip settings. Three of them, Centaurea jacea, Lotus corniculatus, and Daucus carota were mainly visited for nectar collection, and a spontaneous non-sown species, Trifolium repens, had a key role in providing high-quality pollen to insects. Most of the observed flower-visiting insects belonged to common species of Hymenoptera and Diptera. All are considered highly efficient pollinators. The Belgian pollinator flower-strips are effective AES that provide flower resources to pollinators, mainly during summer and support pollination services. Nevertheless, spring and autumn flower resources remain poor and could reduce the strips’ effectiveness for supporting long-term insect diversity.  相似文献   

20.
Bees collect pollen as an important resource for offspring development while acting as pollen vectors for the plants visited. Foraging preferences of pollinators together with plant species availability shape the web of interactions at the local scale. In this study, we focused on the bee pollinator community of a population of the rare protected perennial herb Dictamnus albus, with the aim to characterise the pollen preferences and the foraging niche overlap among species through time. Bees were sampled during four consecutive years in a natural population of D. albus, throughout the blooming period of the plant species. We performed an analysis of insect pollen loads to investigate the interactions with the study species and the co-flowering plants in the area, and to evaluate the degree of foraging overlap among pollinators. Over the study years, all bee species showed a high fidelity to D. albus (60–80%), even if some taxa preferentially collected pollen from other flowering species. The foraging niche overlap in the pollinator community decreased together with an increased diversity of co-flowering plant species. The results obtained indicate that bees preferentially forage on D. albus in the studied area, but that co-flowering species contribute to complement their diet and likely reduce competition for foraging resources. It appears therefore important to maintain a high diversity of co-flowering plants to preserve the diversity in the studied pollinator community of D. albus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号