首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
To clarify whether multiple mating of females and males affects the reproductive performance of the rice leaffolder moth, Cnaphalocrocis medinalis (Guenée), we examined the effect of the number of matings (once, twice, or three times) for females (female treatment) and males (male treatment) on the incidence of moth mating, number of eggs laid, egg hatchability, and adult longevity. We also compared the effect of multiple mating imposed on males or females separately with the effect of that imposed on both sexes simultaneously (both sexes treatment). The incidence of mating of females and males that mated three times (3-mated females and males) was significantly lower than for females and males that mated twice or once (2-mated or 1-mated females and males). The incidence of mating of 1-mated moths (both sexes) was significantly higher than for 2-mated or 3-mated moths (both sexes). Two-mated or 3-mated females laid significantly more eggs with significantly higher hatchability than 1-mated females. Females that mated with 1-mated males (second male mating) or 2-mated males (third male mating) laid significantly fewer eggs than those that mated with virgin males (first male mating). Females laid significantly more eggs after the second and third matings for moths of both sexes than after the first mating for moths of both sexes. The mechanisms of improvement and decline of female reproductive performance when multiple mating was imposed on males or females are also discussed in relation to the reproductive biology of C. medinalis.  相似文献   

2.
The Oriental fruit moth, Cydia molesta (Busck, 1916) (Lepidoptera: Tortricidae), is a key pest of fruit and is widely distributed around the world. There are important connections between its behavior and biology and its management in agriculture, but few studies have investigated the associations between adult behaviors and oviposition. In this study, adult emergence, mating, and reproduction were investigated under laboratory and field conditions. The ratio of females to males at eclosion was approximately 1:1. When one virgin female had access to one virgin male, 66% and 34% of the couples copulated just once and twice, respectively; and the infertility rate of eggs (21.39 ± 1.25%) did not vary daily. Males, given access to one new female daily, could copulate multiple times, whereas females seldom mated more than once, indicating a male-biased operational sex ratio, but mating status of the male parent had no effect on progeny egg reproduction. Also, the number of eggs that hatched by all female partners of a male was inversely proportional to copulation duration for the female laying the eggs for total female reproductive success; and the number of eggs laid by all female partners of a male was proportional to their number of matings for total male reproductive success. However, the total number of eggs that hatched did not significantly differ for eggs laid by a female given new virgin males daily for mating (17.75 ± 4.28) versus eggs laid by virgin females (19.17 ± 7.51) presented daily with a male that re-mated daily with the series of females. Therefore, our results showed that females engaged in mate choice and males engaged in mate competition, affecting egg production, a factor that may be used to enhance mating disruption technology against Cydia molesta.  相似文献   

3.
Multiple mating is found in many insect taxa where both of the sexes can mate more than once. For males, this leads to the advantage of increasing their paternity by fertilizing more females. However, there is a trade‐off of resource allocation between reproduction and other life‐history characters. In the present study, the impact of increased mating rate on reproductive fitness of the invasive nipa palm hispid beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) is investigated. A series of mating frequencies (i.e. 1, 5, 10, 15, 20 times) is selected from video frame playback, ranking from the minimum to maximum mating rate observed under laboratory conditions over a given time period. Fecundity parameters such as lifetime egg production, egg‐hatching rate, effective oviposition period and longevity are investigated for the evaluation of reproductive efficiency. For female O. nipae, increased fecundity is correlated with the mating frequency. Females mating 15 times lay the largest number of eggs (138.82 ± 6.87) and have a hatching rate of 47.43 ± 4.08%. After mating 20 times, females suffer significant declines in oviposition (90.31 ± 8.38 eggs) and egg‐hatching rate (34.16 ± 4.93%). Moreover, the population growth rate reaches a maximum in the females that mate 15 times. The results show that multiple matings in O. nipae have an intermediate optimal range within which female reproductive success is enhanced, providing empirical evidence for the existence of a trade‐off between costs and benefits during copulation based on resource allocation.  相似文献   

4.
We investigated the lifetime mating potential and the reproductive behavior of male and female turnip moths Agrotis segetum (Schiff.) under field and laboratory conditions. The sex ratio was 1 : 1 in a lab-reared population as well as in two wild populations. Males were capable of mating repetitively a relatively large number of times (mean of 6.7 ± 2.7 matings) when given access to new virgin females throughout their lifetimes. Females seldom mated more than once (mean ± 1.3 ± 0.6 matings), indicating a male-biased operational sex ratio. The mean potential lifetime mating was five times higher in males, while the coefficient of variance was lower in males. There was no differences in longevity between animals that were allowed to mate and animals not allowed to mate, indicating no direct costs or benefits of mating in physiological terms. In males, the number of matings was positively correlated with longevity, but this was not the case in females. Nor was there a correlation between the number of female matings and the number of fertilized eggs. There was a negative correlation between the number of eggs fertilized and the number of times males had previously mated, indicating that male ejaculates were limited. Male spermatophore size also decreased with number of achieved matings. Laboratory-reared females attracted males in the field throughout their lifetimes, with a peak at 3–7 days of age. Wild males, allowed to choose between pairs of caged females in the field, were attracted in equal numbers to females of different ages. Females did not show any mate-rejection behavior in the field. They mated with the first male that courted them. No incidence of mate replacement by males arriving later to already courted females were recorded.  相似文献   

5.
The trade‐off between the allocation of resources toward somatic maintenance or reproduction is one of the fundamentals of life history theory and predicts that females invest in offspring at the expense of their longevity or vice versa. Mate quality may also affect life history trade‐offs through mechanisms of sexual conflict; however, few studies have examined the interaction between mate quality and age at first mating in reproductive decisions. Using house crickets (Acheta domesticus), this study examines how survival and reproductive trade‐offs change based on females’ age at first reproduction and exposure to males of varying size. Females were exposed to either a large (presumably high‐quality) or small male at an early (young), middle (intermediate), or advanced (old) age, and longevity and reproductive investment were subsequently tracked. Females mated at a young age had the largest number of eggs but the shortest total lifespans while females mated at older ages produced fewer eggs but had longer total lifespans. The trade‐off between age at first mating and eggs laid appears to be mediated through higher egg‐laying rates and shorter postmating lifespans in females mated later in life. Exposure to small males resulted in shorter lifespans and higher egg‐laying rates for all females indicating that male manipulation of females, presumably through spermatophore contents, varies with male size in this species. Together, these data strongly support a trade‐off between age at first reproduction and lifespan and support the role of sexual conflict in shaping patterns of reproduction.  相似文献   

6.
The frequency of mating in insects is often an important determinant of female reproductive output and male sperm competition. In Lepidoptera that provide male nutrients to the female when mating, it is hypothesized that polyandry may be more prevalent. This is thought to be especially so among species described as income breeders; that is, in species who do not derive all their nutrients for reproductive output entirely from the resources obtained during the larval stage. We selected the geometrid moth, Mnesampela privata (Guenée) (Lepidoptera: Geometridae), to examine this hypothesis further. We found this species was best characterized as an income breeder with female weight on emergence positively correlated with total egg load but not with the number of eggs laid. Further, in accord with income breeders, females emerged with a partially developed egg load and lifetime fecundity was positively correlated with the number of oviposition days. However, in the laboratory we found that incidence of repeated matings or polyandry was rare. When moths were paired singly over their lifetime, only 4% of mated females multiple mated. When females were paired with three males concurrently, female mating success increased from 60 to 81% with multiple mating among mated females increasing to just 15%. Dissection of wild caught M. privata found that polyandry levels were also low with a maximum of 16.4% of females collected at any one time being multiple mated. In accord with theory, mating significantly increased the longevity of females, but not of males, suggesting that females acquire essential resources from male ejaculates. Despite this, multiple mated females showed a trend toward decreasing rather than increasing female reproductive output. Spermatophore size, measured on death of the female, was not correlated with male or female forewing length but was negatively correlated with the number of fertile eggs laid and female longevity. Smaller spermatophore width may be related to uptake of more nutrients by the female from a spermatophore. We discuss our findings in relation to income breeding and its relationship to polyandry in Lepidoptera.  相似文献   

7.
  • 1 The success of mating disruption using synthetic sex pheromones depends not only on preventing mating, but also on delaying mating in the target insect. Using the geometrid pest of Eucalyptus plantations, Mnesampela privata (Guenée), we determined the effect of delaying mating when imposed on males only, females only or on both sexes simultaneously, for 1, 3, 5 and 7 days.
  • 2 Delayed mating had a significant negative impact on reproduction, with a 0.89‐fold decrease in the likelihood of mating and a 0.67‐fold decrease in the likelihood of that mating resulting in fertile eggs for every day that mating is delayed. A mating delay of 7 days reduced the mean number of viable eggs laid to 4–13% of that laid by moths paired immediately after emergence.
  • 3 Male only imposed mating delays had a significantly lower effect on reducing the likelihood of pairs mating than when both sexes were delayed. A delay imposed on one sex only or on both sexes simultaneously, however, had a similar negative impact on the proportion of fertile matings as well as on the total number of fertile eggs laid.
  • 4 Longevity of mated female and male M. privata was significantly different between mating delay treatments, with a significant decline in female longevity when they mated with older males.
  • 5 The underlying mechanisms causing a decline in female reproductive output when a mating delay was imposed on males versus females are discussed in relation to the reproductive biology of M. privata and the potential of using mating disruption strategies to control populations in Eucalyptus plantations.
  相似文献   

8.
1. In many organisms, males provide nutrients to females via ejaculates that can influence female fecundity, longevity and mating behaviour. The effect of male mating history on male ejaculate size, female fecundity, female longevity and female remating behaviour in the seed beetle Callosobruchus maculatus was determined.
2. The quantity of ejaculate passed to females declined dramatically with successive matings. Despite the decline, a male's ability to fertilize a female fully did not appear to decline substantially until his fourth mating.
3. When females multiply mated with males of a particular mated status, the pattern of egg production was cyclic, with egg production increasing after mating. Females multiply mated to virgins had higher fecundity than females mated to non-virgins, and females mated to twice-mated males had disproportionately increased egg production late in their life.
4. Females that mated to multiple virgins, and consequently laid more eggs, experienced greater mortality than females mated only once or mated to non-virgins, suggesting that egg production is costly, and rather than ameliorating these costs, male ejaculates may increase them by allowing or stimulating females to lay more eggs.
5. Females mating with non-virgin males remated more readily than did females mated to virgins. Females given food supplements were less likely to remate than females that were nutritionally stressed, suggesting that females remate in part to obtain additional nutrients.  相似文献   

9.
Abstract 1 Despite the importance of Leucoptera coffeella (Guérin‐Mèneville) in coffee production worldwide, there is a lack of information on its reproduction. This knowledge will help in mass rearing, and support the development of behavioural control techniques for this insect. The present study determined the effects of delayed mating and previous matings of male L. coffeella on fecundity, egg viability and frequency of female remating. 2 The highest levels of fecundity and egg viability were obtained from matings of 1–3‐day‐old females. When females mated at 5 days of age, there were reductions of 40% in oviposition and of 43% in egg viability. 3 Females mated with 2‐day‐old virgin males were more fecund than those mated with older males; egg viability was also low (18%) from females mated with older males. 4 Virgin females that mated with virgin males laid a greater number of eggs than those mated with previously copulated males. Egg viability decreased with the increase in the number of previous male matings. 5 Five‐day‐old females remated in greater proportion than 2–3‐day‐old females. Females that copulated with males that had previously mated three times had higher rates of remating than those that copulated with virgin males. 6 The results obtained indicate that 1–3 days after emergence is the optimum age for mating. The implications of these findings for the control of L. coffeella by synthetic sex pheromone are discussed.  相似文献   

10.
Mating is an energy demanding process, imposing risks to physical injuries, pathogen infection and predation. Nevertheless, repeated and multiple mating are widespread even in insect species where nuptial gifts are not involved. The effects of repeated mating, by the same male, are examined on the reproductive performance of female Southern green stink bug Nezara viridula (L.). Fecundity is reduced in females mated three or four times, although there is increased longevity. Females mated once or twice produce more egg clusters and concentrate egg‐laying activity in the early part of adult life, whereas those mating more often lay eggs throughout the life span, with fewer egg clusters. Although fecundity is negatively affected by the number of matings, egg fertility remains unaffected.  相似文献   

11.
For many species, mating is a necessary yet costly activity. The costs involved can have an important influence on the evolution of life histories and senescence. Females of many species mate multiply, and this behaviour can inflict a longevity cost. Most studies investigating the effects of multiple mating on female survival have been conducted on insects, and the effects in other taxa are largely unknown. We investigate the effects of both a single mating and a second mating on longevity in female dumpling squid (Euprymna tasmanica), a species in which both sexes mate multiply. Through comparing the longevity of virgin, once‐mated and twice‐mated females, we found that a single mating reduced female life span by 15 days on average. A second mating resulted in an additional 8 day (on average) longevity cost, despite no difference in total clutch mass, number of clutches, single egg mass or number of eggs per clutch between once‐mated and twice‐mated females. This demonstrates a cost to multiple mating which may be independent of the cost of egg production. Furthermore, total clutch mass and female life span were positively correlated, whereas female life span decreased with increasing average water temperature. The presence of an additive effect of reproduction on longevity suggests that multiple mating in cephalopods may have benefits that outweigh these costs, or that there is a conflict in optimal mating frequency between males and females.  相似文献   

12.
Abstract:  The effect of diamondback moth (DBM), Plutella xylostella (Lep., Plutellidae) male and female multiple mating on fecundity, fertility, and longevity was studied. Males could mate for five times with virgin females during scotophase. The successful copulation rates, fecundity of female, and longevity of both females and males decreased when male mating times increased, whereas copulation duration increased. Correlation coefficient between copulation duration and male mating times was significant ( r  = 0.7358, P = 0.0001, spearman rank-order correlation). There were linear relationships between mating history of males and longevities of males and females, and regression relationships between them were significant. Mated females had similar daily reproductive pattern, which laid the most eggs on the first day after mating in spite of their mates' mating history. Virgin females laid some infertile eggs before they died. Most of the females mated once during their lifespan but 19.9% of females mated twice when one female kept with one male during scotophase. There were no significant differences in the fecundity, fertility and longevity between the single- and twice-mated females. Correlation coefficient between copulation duration and female mating times was not significant ( r  = 0.0860, P = 0.8575). Results suggested that DBM females may be monandrous. Multiple mating did not increase male or female mating fitness.  相似文献   

13.
Abstract Age-specific mating incidence, sexual maturation and effect of age at mating on reproductive performance of the Parthenium beetle, Zygogramma bicolorata Pallister, was studied. Based on 50% mating incidence the calculated age of sexual maturation of males and females was 10.5 and 11.1 days, respectively, which was not statistically significant. However, on the basis of age at first mating, that is, sexual maturity, females matured 2 days earlier than males. Fecundity, pre-oviposition, oviposition and post-oviposition period and female longevity appear to be influenced by female age at mating with reproductive performance peaking at 30 days. On the other hand, egg viability was influenced by male age and was highest when males mated at the age of 40 days. To summarise, egg production and timing of egg deposition was female age-dependent, whereas egg fertility was male age-dependent. It was also observed that females mated at a later age and laid a higher number of eggs immediately after mating than did earlier mated females. This was ostensibly in a bid to increase fitness by maximizing reproductive output in the reduced life span available. This is the first investigation on the effect of age of females at mating on reproduction in this beetle.  相似文献   

14.
Summary

The reproductive behavior of the honeydew moth, Cryptoblabes gnidiella (Millière) (Lepidoptera: Pyralidae), was studied in the laboratory. The sex ratio was 1.1:1, males to females, in both laboratory and field stocks. Most of the females that mated did so during the first night after emergence; males began mating on the following night. Mating occurred 1–2 h before dawn and averaged 100 min. Both sexes mated only once in one night. Most females mated only once in their lifetime, a few mated 2–4 times, whereas males mated up to six times per lifetime. Insects that lived longer also mated more times. When the sex ratio was altered from 3:1 to 1:3, males to females, the percentage of females that mated in one night dropped from 90 to 65, whereas the number of matings per male rose from 0.32 to 2.25. When fresh one-day-old females were provided daily at a ratio of three per male, the males averaged 1.4 matings per lifetime vs. 2.6 with 2- to 3-day-old females. A delay in mating did not affect the percentages of males and females that mated; highest percentages were obtained with 2- to 4-day-old males and females, but a delay in mating resulted in egg fertility dropping from 91 % to 73 %. The preoviposition period lasted a full day after mating, and then most of the eggs were laid during the first night. Average fecundity was 105 eggs per female (maximum: 230).  相似文献   

15.
In yellow mealworm beetles (Tenebrio molitor), females are sexually receptive throughout their adult lives. We examined how access to mates affected female fecundity by varying the number of matings per female and quantifying cumulative egg production. Also, we dissected females at successive intervals after a single mating to assess the relationship among time since mating, sperm supplies, egg load, and oviposition rate. Females that mated at intervals greater than 2 days did not produce as many eggs as females that mated every 2 days or were allowed to mate ad libitum. Dissections showed that the amount of sperm remaining in a female spermatheca was correlated with the number of eggs she had laid recently, which suggests sperm replenishment as the material benefit gained through multiple mating. However, females mate more frequently than necessary for sperm replenishment, and therefore material benefits alone may not fully explain the continuous receptivity of T. molitor females.  相似文献   

16.
Female crickets can potentially gain both direct and indirect benefits from mating multiple times with different males. Most studies have only examined the effects of small numbers of matings, although female crickets are capable of mating many times. The goal of this paper is to examine the direct and indirect benefits of mating large numbers of times for female reproductive success. In a previous experiment, female Gryllus vocalis were found to gain diminishing direct benefits from mating large numbers of times. In this study I attempt to determine whether mating large numbers of times yields similar diminishing returns on female indirect benefits. Virgin female Gryllus vocalis crickets were assigned to mate five, ten or 15 times with either the same or different males. Females that mated more times gained direct benefits in terms of laying more eggs and more fertilized eggs. Females that mated with different males rather than mating repeatedly with the same male did not have higher offspring hatching success, a result that is contrary to other published results comparing female reproductive success with repeated versus different partners. These results suggest that females that mate large numbers of times fail to gain additional genetic benefits from doing so.  相似文献   

17.
Mating and oviposition behaviors were studied inCallosobruchus subinnotatus. Copulation was most frequent during the late scotophase, 2–3 h before onset of photophase. The females were less willing to mate during photophase, which increased the time to initiate mating while decreasing the duration of mating. Females exhibited increased movement prior to mating, resting immediately after mating, and remained stationary for 6 h when oviposition commenced. Multiple mating by both males and females affected the number of eggs laid, duration of mating, and uncoupling time at the end of mating. Females that mated two or three times laid more eggs than females that mated once or more than three times. Females that remainedin copula for less than 18 min showed greater readiness to remate than those that remainedin copula longer. There was a gradual decrease in the number of eggs females could lay with an increase in the number of previous matings by males.  相似文献   

18.
Studies of the life cycle of cultured Dermatophagoides farinae found that after an initial mating D. farinae females lived for 63.3 ± 64.6 (SD) dafter their egg production period ended .The long period after cessation of egg production for D. farinae suggested D. farinae females could mate multiple times and produce eggs continuously for a longer period. The purpose of this study was to determine if female D. farinae could mate at least two times, and subsequently increase the production of viable eggs over a longer period of time compared to a single mating. Female D. farinae were randomly selected from thriving cultures and isolated in cages. When the females had ceased to lay eggs a male was added to the cage. Fifty-seven percent of the isolated females mated again and produced a second batch of viable eggs. In natural or culture populations, females have continuous availability of males. Therefore, in another experiment, females that emerged from the tritonymphal stages were continuously exposed to fresh males and fecundity and lengths of the reproductive and post reproductive periods were determined. These females had a 11 d longer reproductive period and produced 30.7% more eggs compared to females that only mated one time after they emerged from the tritonymphal stage. However, the post reproductive period was still long (58.6 ± 11.4 [SE] d) the significance of which is not clear. In conclusion, this study revealed that D. farinae females are capable of more than one successful mating that results in increased egg production compared to that of a single mating. It is likely that females mate multiple times in natural and culture populations. It was observed that females actively attract males during the reproductive period but not afterward even though she continues to live a long time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

20.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号