首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
N,N′-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstitued mitochondrial cytochrome b-c1 complex. DCCD inhibits equally electron flow and proton translocation (i.e., the H+e? ratio is not affected) catalysed by the enzyme reconstituted into phospholipid vesicles. The inhibitory effects are accompanied by structural alterations in the polypeptide pattern of both isolated and reconstituted enzyme. Cross-linking was observed between subunits V (iron-sulfur protein) and VII, indicating that these polypeptides are in close proximity. A clear correlation was found between the kinetics of inhibition of enzymic activity and the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C]DCCD was also observed, to all subunits with the isolated enzyme and preferentially to cytochrome b with the reconstituted vesicles; in both cases, however, it was not correlated kinetically with the inhibition of the enzymic activity.  相似文献   

2.
The proton translocating properties of cytochrome c oxidase in whole cells of Paracoccus denitrificans have been studied with the oxidant pulse method.H+2e? quotients have been measured with endogenous substrates, added methanol and added ascorbate (+TMPD) as reductants, and oxygen and ferricyanide as oxidants. It was found that both the observed H+O with ascorbate (+TMPD) as reductant, and the differences in proton ejection between oxygenand ferricyanide pulses, with endogenous substrates or added methanol as a substrte, indicate that the P. denitrificans cytochrome c oxidase translocates protons with a stoichiometry of 2H+2e?. The results presented in this and previous papers are in good agreement with recent findings concerning the mitochondrial cytochrome c oxidase, and suggest unequal charge separation by different coupling segments of the respiratory chain of P. denitrificans.  相似文献   

3.
Klaas Krab  Mårten Wikström 《BBA》1978,504(1):200-214
The proton translocating properties of cytochrome c oxidase have been studied in artificial phospholipid vesicles into the membranes of which the isolated and purified enzyme was incorporated.Initiation of oxidation of ferrocytochrome c by addition of the cytochrome, or by addition of oxygen to an anaerobic vesicle suspension, leads to ejection of H+ from the vesicles provided that charge compensation is permitted by the presence of valinomycin and K+. Proton ejection is not observed if the membranes have been specifically rendered permeable to protons.The proton ejection is the result of true translocation of H+ across the membrane as indicated by its dependence on the intravesicular buffering power relative to the number of particles (electrons and protons) transferred by the system, and since it can be shown not to be due to a net formation of acid in the system.Comparison of the initial rates of proton ejection and oxidation of cytochrome c yields a H+e? quotient close to 1.0 both in cytochrome c and oxygen pulse experiments. An approach towards the same stoichiometry is found by comparison of the extents of proton ejection and electron transfer under appropriate experimental conditions.It is concluded that cytochrome c oxidase is a proton pump, which conserves redox energy by converting it into an electrochemical proton gradient through electrogenic translocation of H+.  相似文献   

4.
The proton ejection coupled to electron flow from succinate and/or endogenous substrate(s) to cytochrome c using the impermeable electron acceptor ferricyanide is studied in tightly coupled mitochondria isolated from two strains of the yeast Saccharomyces cerevisiae. (1) The observed H+ ejection/2e? ratio approaches an average value of 3 when K+ (in the presence of valinomycin) is used as charge-compensating cation. (2) In the presence of the proton-conducting agent carbonyl cyanide m-chlorophenylhydrazone, an H+ ejection/2e? ratio of 2 is observed. (3) The low stoichiometry of 3H+ ejected (instead of 4) per 2e? and the high rate of H+ back-decay (0.1615 lnδ-(ngatom)H+s and a half-time of 4.6 s for 10 mg protein) into the mitochondrial matrix are related to the presence of an electroneutral K+/H+ antiporter which is demonstrated by passive swelling experiments in isotonic potassium acetate medium.  相似文献   

5.
R.L. Pan  S. Izawa 《BBA》1979,547(2):311-319
NH2OH-treated, non-water-splitting chloroplasts can oxidize H2O2 to O2 through Photosystem II at substantial rates (100–250 μequiv · h?1 · mg?1 chlorophyll with 5 mM H2O2) using 2,5-dimethyl-p-benzoquinone as an electron acceptor in the presence of the plastoquinone antagonist dibromothymoquinone. This H2O2 → Photosystem II → dimethylquinone reaction supports phosphorylation with a Pe2 ratio of 0.25–0.35 and proton uptake with H+e values of 0.67 (pH 8)–0.85 (pH 6). These are close to the Pe2 value of 0.3–0.38 and the H+e values of 0.7–0.93 found in parallel experiments for the H2O → Photosystem II → dimethylquinone reaction in untreated chloroplasts. Semi-quantitative data are also presented which show that the donor → Photosystem II → dibromothymoquinone (→O2) reaction can support phosphorylation when the donor used is a proton-releasing reductant (benzidine, catechol) but not when it is a non-proton carrier (I?, ferrocyanide).  相似文献   

6.
Charles F Fowler  Bessel Kok 《BBA》1976,423(3):510-523
Using a rapid pH electrode, measurements were made of the flash-induced proton transport in isolated spinach chloroplasts. To calibrate the system, we assumed that in the presence of ferricyanide and in steady-state flashing light, each flash liberates from water one proton per reaction chain. We concluded that with both ferricyanide and methylviologen as acceptors two protons per electron are translocated by the electron transport chain connecting Photosystem II and I. With methyl viologen but not with ferricyanide as an acceptor, two additional protons per electron are taken up due to Photosystem I activity. One of these latter protons is translocated to the inside of the thylakoid while the other is taken up in H2O2 formation. Assuming that the proton released during water splitting remains inside the thylakoid, we compute H+e? ratios of 3 and 4 for ferricyanide and methyl viologen, respectively.In continuous light of low intensity, we obtained the same H+e? ratios. However, with higher intensities where electron transport becomes rate limited by the internal pH, the H+e? ratio approached 2 as a limit for both acceptors.A working model is presented which includes two sites of proton translocation, one between the photoacts, the other connected to Photosystem I, each of which translocates two protons per electron. Each site presents a ≈ 30 ms diffusion barrier to proton passage which can be lowered by uncouplers to 6–10 ms.  相似文献   

7.
8.
Peter R. Rich  Peter Heathcote 《BBA》1983,723(2):332-340
(i) Purified bovine heart mitochondrial cytochrome b-c1 complex (ubiquinone-cytochrome c oxidoreductase) and photosynthetic reaction centres isolated from Rhodopseudomonas sphaeroides strain R-26 have been incorporated into lipid vesicles. In the presence of cytochrome c and ubiquinone-2, light activation caused a cyclic electron transfer involving both components. (2) Since cytochrome c is added outside the vesicles, it is both reduced by the cytochrome b-c1 complex and oxidised by the reaction centre on the outside of the vesicles. Ubiquinone-2, however, is reduced by the reaction centres at a site in contact with the inside of the vesicles, but the reduced form, ubiquinol-2, is oxidised by the cytochrome b-c1 complex at a site in contact with the outer aqueous phase. (3) In the presence of valinomycin plus K+, initiation of cyclic electron flow causes protons to move from inside the vesicles to the outer medium and the H+2e? ratio was calculated to be close to 4.  相似文献   

9.
(1) Analysis of the data from steady-state kinetic studies shows that two reactions between cytochrome c and cytochrome c oxidase sufficed to describe the concave Eadie-Hofstee plots (Km ? 1 · 10?8M and Km ? 2 · 10?5M). It is not necessary to postulate a third reaction of Km ? 10?6M. (2) Change of temperature, type of detergent and type of cytochrome c affected both reactions to the same extent. The presence of only a single catalytic cytochrome c interaction site on the oxidase could explain the kinetic data. (3) Our experiments support the notion that, at least under our conditions (pH 7.8, low-ionic strength), the dissociation of ferricytochrome c from cytochrome c oxidase is the rate-limiting step in the steady-state kinetics. (4) A series of models, proposed to describe the observed steady-state kinetics, is discussed.  相似文献   

10.
The stoichiometry of H+ ejection coupled to electron flow from succinate to ferricyanide in the electron transport chain of mitochondria from Ehrlich ascites tumor and AS30-D hepatoma cells was determined. Values close to 4.0 for the H+2e? ejection ratio were found in both cell lines, with either Ca2+ or K+ (+ valinomycin) as charge-compensating permeant cation. The 4 H+ ejected were compensated by outward movement of two negative charges to reduce 2 Fe(CN)63? to 2 Fe(CN)64?, and the uptake of two positive charges in the form of the permeant cation. Experiments on (a) omission of rotenone (b) the effect of antimycin A and (c) depletion of endogenous NAD(P)-linked substrates showed that no significant endogenous electron flow or H+ ejection occurred, thus eliminating possible overestimation of the H+/2e? ratio from endogenous substrates. These data on mitochondria from two tumor cell lines are fully consistent with earlier measurements of the H+/O stoichiometry for succinate and NADH oxidation in tumor mitochondria and with the H+2e? stoichiometry for site 2 in normal rat liver mitochondria.  相似文献   

11.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

12.
Studies of electron and proton transport in chloroplast preparations (Type D) from spinach (Spinacea oleracea L.) yield three basic results. First, in electron transport catalyzed by methyl viologen from water to oxygen at pH 7.6, the quantum requirement for electron transport (hve?) was 2.2, while the corresponding requirement for proton transport (hvH+) was 1.2. Second, the electron and proton quantum requirements were relatively independent of the individual chloroplast preparation or certain components of the resuspension medium, but did depend upon the reaction medium's initial pH. Third, measurable electron and proton transport did not occur under 715-nm illumination, nor did such activities occur in the presence of DCMU under 645-nm illumination when methyl viologen was used as the electron transport cofactor. These experimental results reconcile the quantum requirement of proton transport with Mitchell's chemiosmotic theory for chloroplast energy transduction and resolve a long standing controversy regarding the quantum requirement in chloroplast thylakoids.  相似文献   

13.
14.
The action of xanthine oxidase upon acetaldehyde or xanthine at pH 10.2 has been shown to be accompanied by substantial accumulation of O2? during the first few minutes of the reaction. H2O2 decreases this accumulation of O2? presumably because of the Haber-Weiss reaction (H2O2+O2?OH?+OH+O2) and very small amounts of superoxide dismutase eliminate it. This accumulation of O2? was demonstrated in terms of a burst of reduction of cytochrome c, seen when the latter compound was added after aerobic preincubation of xanthine oxidase with its substrate. The kinetic peculiarities of the luminescence seen in the presence of luminol, which previously led to the proposal of H2O4?, can now be satisfactorily explained entirely on the basis of known radical intermediates.  相似文献   

15.
In the glycolytic system derived from rat brain acetone powder, ammonium ion has been found to stimulate three different reactions: (a) the transphosphorylase reaction from phosphoenolpyruvate, (b) the phosphohexokinase reaction, and (c) the hexokinase reaction. The transphosphorylases are affected differently depending upon whether adenosine diphosphate or adenylic acid is the phosphate acceptor; in the case of the latter, the dependency upon NH4+ is particularly marked. A highly active myokinase is present in these extracts and its activity influences the transphosphorylase reaction to a considerable extent. The phosphohexokinase reaction is stimulated to a greater extent by NH4+ than is the hexokinase reaction. In contrast to these reactions which require the participation of the adenylic system, triose phosphate oxidase activity is uninfluenced by the presence of NH4+.  相似文献   

16.
The general properties of respiration-driven proton translocation by the two facultative methylotrophs, Pseudomonas AM1 and Pseudomonas extorquens, were similar to those of other bacteria. The stoichiometry of H+ extruded/O atom consumed (H+O) during respiration with a particular substrate depended, however, on the concentration of the permeant anion SCN? used to abolish the membrane potential and on the physiological state of the organism. This variability makes the use of proton translocation data of dubious value in the elucidation of electron-transport pathways, at least in these species, unless the physiological condition of the organisms can be accurately described and reproduced. Methanol oxidation was inhibited by SCN? but substitution of valinomycin for most of the SCN? during pulse oxidant experiments allowed measurement of proton translocation when methanol was the substrate. Starved organisms were used to eliminate ambiquity as to whether added test substrates or endogenous reserve materials were being oxidised. Viability remained high during starvation and endogenous O2 uptake remained detectable long after endogenously driven proton translocation was undetectable. In the absence of endogenously driven proton translocation, measured H+O stoichiometries differed substantially from those when it was present, suggesting that the physiological state of the organisms is an essential parameter in assessing proton translocation data.  相似文献   

17.
The reactivities of anionic nitroalkanes with 2-nitropropane dioxygenase of Hansenula mrakii, glucose oxidase of Aspergillus niger, and mammalian d-amino acid oxidase have been compared kinetically. 2-Nitropropane dioxygenase is 1200 and 4800 times more active with anionic 2-nitropropane than d-amino acid oxidase and glucose oxidase, respectively. The apparent Km values for anionic 2-nitropropane are as follows: 2-nitropropane dioxygenase, 1.61 mm; glucose oxidase, 16.7 mm; and d-amino acid oxidase, 11.1 mm. Anionic 2-nitropropane undergoes an oxygenase reaction with 2-nitropropane dioxygenase and glucose oxidase, and an oxidase reaction with d-amino acid oxidase. In contrast, anionic nitroethane is oxidized through an oxygenase reaction by 2-nitropropane dioxygenase, and through an oxidase reaction by glucose oxidase. All nitroalkane oxidations by these three flavoenzymes are inhibited by Cu and Zn-superoxide dismutase of bovine blood, Mn-superoxide dismutases of bacilli, Fe-superoxide dismutase of Serratia marcescens, and other O2? scavengers such as cytochrome c and NADH, but are not affected by hydroxyl radical scavengers such as mannitol. None of the O2? scavengers tested affected the inherent substrate oxidation by glucose oxidase and d-amino acid oxidase. Furthermore, the generation of O2? in the oxidation of anionic 2-nitropropane by 2-nitropropane dioxygenase was revealed by ESR spectroscoy. The ESR spectrum of anionic 2-nitropropane plus 2-nitropropane dioxygenase shows signals at g1 = 2.007 and g11 = 2.051, which are characteristic of O2?. The O2? generated is a catalytically essential intermediate in the oxidation of anionic nitroalkanes by the enzymes.  相似文献   

18.
The content of cytochrome c-420 in Rhodospirillum rubrum chromatophores prepared by grinding with alumina is 5–10% of that in whole cells, and 20–40% in chromatophores by ‘French’ pressing.Flash-induced phosphorylation of various chromatophores which varied in cytochrome content from 7 to 40% is proportional to the cytochrome content. Extrapolating the cytochrome c-420 content to that observed in whole cells, a ratio ATPP+X? near 1 is calculated. At low flash intensity the phosphorylation per flash is proportional to flash energy.Photophosphorylation in flashes given after a time of several minutes is only slightly dependent on the number of flashes. If the flashes are spaced from 0.1 to 10 s, relative phosphorylation in the first flash is about 70% and in the second 90% of that observed in the following flashes. Proton binding is not affected by the cytochrome c-420 content and a ratio of H+P+X? of 2.3 was found.These results can be explained by a working hypothesis in which charge separation occurring at one reaction centre and the resulting electron transport mediated amongst others by c-420, results in the injection of two protons into an ATPase, this in contrast to a chemiosmotic mechanism, where the protons are released in the chromatophore inner space.  相似文献   

19.
1. In mitochondrial particles antimycin binds to two separate specific sites with dissociation constants Kd1 ≦ 4 · 10?13M and Kd2 = 3 · 10?9M, respectively.2. The concentrations of the two antimycin binding sites are about equal. The absolute concentration for each binding site is about 100 – 150 pmol per mg of mitochondrial protein.3. Antimycin bound to the stronger site mainly inhibits NADH- and succinate oxidase. Binding of antimycin to the weaker binding site inhibits the electron flux to exogenously added cytochrome c after blocking cytochrome oxidase by KCN.4. Under certain conditions cytochrome b and c1 are dispensible components for antimycin-sensitive electron transport.5. A model of the respiratory chain in yeast is proposed which accounts for the results reported here and previously. (Lang, B., Burger, G. and Bandlow, W. (1974) Biochim. Biophys. Acta 368, 71–85).  相似文献   

20.
(1) The total phospholipid content of a gradient purified (K+ + H+)-ATPase preparation from pig gastric mucosa is 105 μmol per 100 mg protein, and consists of 29% sphingomyelin, 29% phosphatidylcholine, 28% phosphatidylethanolamine, 10% phosphatidylserine and 4% phosphatidylinositol. The cholesterol content corresponds to 50 μmol per 100 mg protein. (2) Treatment with phospholipase C (from Clostridium welchii and Bacillus cereus) results in an immediate decrease of the phosphate content. Up to 50% of the phospholipids are hydrolyzed by each phospholipase C preparation alone, without further hydrolysis by increased phospholipase concentration or prolonged incubation time. Combined treatment with the two phospholipase C preparations, sequentially or simultaneously, hydrolyzes up to 65% of the phospholipids. (3) The (K+ + H+)-ATPase and K+ stimulated p-nitrophenylphosphatase activities are decreased proportionally with the total phospholipid content, indicating that these enzyme activities are dependent on phospholipids. (4) Phospholipase C treatment does not change optimal pH, Km value for ATP and temperature dependence of the gastric (K+ + H+)-ATPase, but slightly decreases the Ka value for K+. (5) Phospholipase C treatment lowers the AdoPP[NH]P binding and phosphorylation capacities, suggesting that inactivation occurs primarily on the substrate binding level. (6) Most of the results can be understood by assuming that hydrolysis of the phospholipids by phospholipase C leads to aggregation of the membrane protein molecules and complete inactivation of the aggregated ATPase molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号