首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Picosecond laser spectroscopic analysis was applied to determine how many intermediates existed in the primary photochemical process of trans-bacteriorhodopsin (light-adapted bacteriorhodopsin) at room temperature (18°C) and to calculate their absorption spectra. Irradiation of bacteriorhodopsin with a laser pulse (wavelength, 532 nm; pulse width, 25 ps) yielded the K intermediate (K) which was produced through a precursor, having an absorption maximum (λmax) longer than that of K. K was stable during a picosecond time range (50–900 ps). The λmax was located at 610 nm and the extinction coefficient (?max) was 0.92-times that of bacteriorhodopsin. The same K intermediate was produced from bacteriorhodopsin even when it was excited with a high-energy pulse by which a saturation effect was induced. A transient difference spectrum measured at 150 ns after the excitation of bacteriorhodopsin was different in shape from that of the K intermediate, suggesting that an intermediate was formed by thermal decay of K. This intermediate, tentatively called the KL intermediate (KL), had a λmax at 596 nm and an ?max 0.80-times that of bacteriorhodopsin. KL decayed to the L intermediate (L) with a time constant of 2.2 μs. L has a λmax at 543 nm and an ?max 0.66-times that of bacteriorhodopsin.  相似文献   

2.
At high pH (> 8) the 570 nm absorption band of all-trans bacteriorhodopsin (bR) in purple membrane undergoes a small (1.5 nm) shift to longer wavelengths, which causes a maximal increase in absorption at 615 nm. The pK of the shift is 9.0 in the presence of 167 mM KCl, and its intrinsic pK is ~8.3. The red shift of the trans-bR absorption spectrum correlates with the appearance of the fast component in the light-induced L to M transition, and absorption increases at 238 and 297 nm which are apparently caused by the deprotonation of a tyrosine residue and red shift of the absorption of tryptophan residues. This suggests that the deprotonation of a tyrosine residue with an exceptionally low pK (pKa ≈ 8.3) is responsible for the absorption shift of the chromophore band and fast M formation. The pH and salt dependent equilibrium between the two forms of bR, “neutral” and “alkaline,” bR ↔ bRa, results in two parallel photocycles of trans-bR at high pH, differing in the rate of the L to M transition. In the pH range 10-11.8 deprotonation of two more tyrosine residues is observed with pK's ~ 10.3 and 11.3 (in 167 mM KCL). Two simple models discussing the role of the pH induced tyrosine deprotonation in the photocycle and proton pumping are presented.

It is suggested that the shifts of the absorption bands at high pH are due to the appearance of a negatively charged group inside the protein (tyrosinate) which causes electrochromic shifts of the chromophore and protein absorption bands due to the interaction with the dipole moments in the ground and excited states of bR (Stark effect). This effect gives evidence for a significant change in the dipole moment of the chromophore of bR upon excitation.

Under illumination alkaline bR forms, besides the usual photocycle intermediates, a long-lived species with absorption maximum at 500 nm (P500). P500 slowly converts into bRa in the dark. Upon illumination P500 is transformed into an intermediate having an absorption maximum at 380 nm (P380). P380 can be reconverted to P500 by blue light illumination or by incubation in the dark.

  相似文献   

3.
When cations are removed from the purple membrane of Halobacterium halobium it turns blue (λmax = 603 nm); continuous irradiation with intense red light (λ's ≥ 630 nm) converts this deionized blue membrane into a pink membrane (λmax ≈ 491 nm). The rate and extent of the transformation from the blue to the pink membrane is facilitated by the removal of the last twenty COOH-terminal amino acids of bacteriorhodopsin. While the chromophore of the blue membrane is a 32:68 mixture of the 13-cis and all-trans isomers of retinal, the chromophore of the pink membrane is 9-cis rectinal. The quantum efficiency of the pink to blue membrane photoconversion is relatively high compared with that of the blue to pink membrane photoconversion. Proton release is observed when the pink membrane is converted to the blue form, and proton uptake occurs during the reverse transition. Unlike the blue membrane, the absorbance maximum of the pink membrane is only slightly affected by cation addition at low pH and ionic strength.  相似文献   

4.
Three c-type cytochromes isolated from Nitrobacter agilis were purified to apparent homogeneity: cytochrome c-553, cytochrome c-550 and cytochrome c-549, 554. Their amino acid composition and other properties were studied. Cytochrome c-553 was isolated as a partially reduced form and could not be oxidized by ferricyanide. The completely reduced form of the cytochrome had absorption maxima at 419, 524 and 553 nm. It had a molecular weight of 25 000 and dissociated into two polypeptides of equal size of 11 500 during SDS gel electrophoresis. The isoelectric point of cytochrome c-553 was pH 6.8. The ferricytochrome c-550 exhibited an absorption peak at 410 nm and the ferrocytochrome c showed peaks at 416, 521 and 550 nm. The molecular weight of the cytochrome estimated by gel filtration and by SDS gel electrophoresis was 12 500. It had an Em(7) value of 0.27 V and isoelectric point pH 8.51. The N-terminal sequence of cytochrome c-550 showed a clear homology with the corresponding portions of the sequences of other c-type cytochromes. Cytochrome c-549, 554 possessed atypical absorption spectra with absorption peaks at 402 nm as oxidized form and at 419, 523, 549 and 554 nm when reduced with Na2S2O4. Its molecular weight estimated by gel filtration and SDS polyacrylamide gel electrophoresis was 90 000 and 46 000, respectively. The cytochrome had an isoelectric point of pH 5.6. Cytochrome c-549, 554 was highly autoxidizable.  相似文献   

5.
Early Picosecond Events in the Photocycle of Bacteriorhodopsin   总被引:4,自引:3,他引:1       下载免费PDF全文
The primary processes of the photochemical cycle of light-adapted bacteriorhodopsin (BR) were studied by various experimental techniques with a time resolution of 5 × 10-13 s. The following results were obtained. (a) After optical excitation the first excited singlet state S1 of bacteriorhodopsin is observed via its fluorescence and absorption properties. The population of the excited singlet state decays with a lifetime τ1 of ~0.7 ps (430 ± 50 fs) (52). (b) With the same time constant the first ground-state intermediate J builds up. Its absorption spectrum is red-shifted relative to the spectrum of BR by ~30 nm. (c) The second photoproduct K, which appears with a time constant of τ2 = 5 ps shows a red-shift of 20 nm, relative to the peak of BR. Its absorption remains constant for the observation time of 300 ps. (d) Upon suspending bacteriorhodopsin in D2O and deuterating the retinal Schiff base at its nitrogen (lysine 216), the same photoproducts J and K are observed. The relaxation time constants τ1 and τ2 remain unchanged upon deuteration within the experimental accuracy of 20%.  相似文献   

6.
The effect of sodium dodecyl sulfate (SDS) on human, bovine, porcine, rabbit and sheep serum albumins were investigated at pH 3.5 by using various spectroscopic techniques like circular dichroism (CD), intrinsic fluorescence and dynamic light scattering (DLS). In the presence of 4.0 mM SDS the secondary structure of all the albumins were not affected as measured by CD but fluorescence spectra revealed 8.0 nm blue shift in emission maxima. We further checked the stability of albumins in the absence and presence of 4.0 mM SDS by urea and temperature at pH 3.5. In the absence of SDS, urea starts unfolding both secondary as well as tertiary structural elements of the all the albumins at ∼2.0 M urea but in the presence of 4.0 mM SDS, urea was unable to unfold even up to 9.0 M. The albumins were thermally less stable at pH 3.5 with decrease in Tm but in the presence of 4.0 mM SDS, the Tm was increased. From this study, it was concluded that SDS is showing a protective effect against urea as well as thermal denaturation of albumins. This behavior may be due to electrostatic as well as the hydrophobic interaction of SDS with albumins. Further, we have proposed the mechanism of action of urea. It was found that urea interacted with proteins directly when proteins are in charged form. Indirect interaction may be taking place when the environment is more hydrophobic.  相似文献   

7.
E.J. Land  A.J. Swallow 《BBA》1974,368(1):86-96
When ferricytochrome c at pH about 9 is reduced by hydrated electrons and/or CO2?, it gives rise to an unstable form of ferrocytochrome c whose absorption spectrum, particularly in the Soret region, differs from that of normal ferrocytochrome c. This form changes intramolecularly (life-time about 0.1 s at ambient temperature) to yield normal ferrocytochrome c, and by 0.5 s the change in absorption spectrum in the range 225–600 nm produced by e?aq and/or CO2? is identical to the final change produced by reduction with an equivalent amount of sodium dithionite. This shows that both e?aq and CO?2 reduce cytochrome c with practically 100% efficiency. In the range 600–800 nm the spectrum of the unstable form is the same as that of normal ferrocytochrome c, both having small absorptions at 695 nm as compared with ferricytochrome c. As the unstable form disappears however a further loss of absorption at 695 nm occurs. This is taken to imply that the unstable form decays to a second unstable form which then rapidly donates an electron to the unchanged neutral form of ferricytochrome c, so reducing absorption in the 695 nm band. Subsequent to this process the absorption in the 695 nm band increases over a period of minutes owing to re-equilibration between the neutral and alkaline formes of ferricytochrome c. Between pH 7 and 10 the effect of pH on the absorption changes is consistent with the hypothesis of a second unstable form of ferrocytochrome c. Additional phenomena arise in more alkaline solutions. The rates of the various unimolecular processes are thought to be determined by the rates of change of conformation of the protein parts of the molecule following the change in oxidation state.  相似文献   

8.
Phycoerythrin, a chromoprotein, from the cryptomonad alga Rhodomonas lens is composed of two pairs of nonidentical polypeptides (α2β2). This structure is indicated by a molecular weight of 54,300, calculated from osmotic pressure measurements and by sodium dodecyl sulfate (SDS) gel electrophoresis, which showed bands with molecular weights of 9800 and 17,700 in a 1:1 molar ratio. The s20,w0 of 4.3S is consistent with a protein of this molecular weight. Similar results were obtained with another cryptomonad phycoerythrin and a cryptomonad phycocyanin. Electrophoresis after partial cross-linking by dimethyl suberimidate revealed seven bands for the cryptomonad phycocyanin and six bands for cryptomonad phycoerythrin and confirmed the proposed structure. Spectroscopic studies on α and β subunits of cryptomonad phycocyanin and phycoerythrin were carried out on the separated bands in SDS gels. The individual polypeptides possessed a single absorption band with the following maxima: phycoerythrin (R. lens), α at 565 nm, β at 531 nm; phycocyanin (Chroomonas sp.), α at 644 nm, β at 566 nm. Fluorescence polarization was not constant across the visible absorption band regions of phycoerythrin (R. lens and C. ovata) with higher polarizations located at higher wavelengths, as had also been previously shown for cryptomonad phycocyanin (Chroomonas sp.). Combining the absorption spectra and the polarization results indicates that in each case the β subunit contains sensitizing chromophores and the α subunit fluorescing chromophores. The CD spectra of cryptomonad phycocyanin and both phycoerythrins were similar and were related to the spectra of the individual subunits. In Ouchterlony double-diffusion experiments the cryptomonad phycoerythrins and phycocyanins cross-reacted, with spurring, with phycoerythrin isolated from a red alga. The cryptomonad phycoerythrins were immunochemically very similar to each other and to cryptomonad phycocyanin, with little spurring detected.  相似文献   

9.
Low-temperature absorption, circular dichroism and resonance Raman spectra of the LM units isolated with sodium dodecyl sulfate from wild-type Rhodopseudomonas sphaeroides reaction centers (Agalidis, I. and Reiss-Husson, F. (1983) Biochim. Biophys. Acta 724, 340–351) are described in comparison with those of intact reaction centers. In LM unit, the Qy absorption band of P-870 at 77 K shifted from 890 nm (in reaction center) to 870 nm and was broadened by about 30%. In contrast, the 800 nm bacteriochlorophyll absorption band including the 810 species remained unmodified. It was concluded that the 810 nm transition is not the higher excitonic component of P-870. The Qx band of P-870 shifted from 602 nm (in reaction center) to 598 nm in LM, whereas the Qx band of the other bacteriochlorophylls was the same in reaction center and LM and had two components at about 605 and 598 nm. The QxII band of bacteriopheophytin was upshifted to 538 nm and a slight blue shift of the Qy band of bacteriopheophytin was observed. Resonance Raman spectra of spheroidene in LM showed that its native cis-conformation was preserved. Resonance Raman spectroscopy also demonstrated that in LM the molecular interactions assumed by the conjugated carbonyls of bacteriochlorophyll molecules were altered, but not those assumed by the bacteriopheophytins carbonyls. In particular at least one Keto group of bacteriochlorophyll free in reaction center, becomes intermolecularly bounded in LM (possibly with extraneous water). This group may belong to the primary donor molecules.  相似文献   

10.
Purple membranes of Halobacterium, halobium were modified with fluorescamine. At pH 8.8, with a molar ratio of fluorescamine to bacteriorhodopsin of 170, about 6 residues of lysine were modified while the arginines were not affected at all. Except for the appearance of the fluorescamine peak at 394 nm and some broadening of the chromophore peak at 570 nm, the absorption spectrum of bacteriorhodopsin was not significantly changed after modification. After fluorescamine modification, circular dichroism studies indicated loss of exciton coupling between bacteriorhodopsin molecules in the purple membrane. Rotational diffusion studies suggested enhanced mobility of the chromophore after modification. However, the spectral changes accompanying the light-to-dark adaptation of purple membranes were not prevented by fluorescamine modification. The implications of these findings are that exciton coupling between neighboring bacteriorhodopsin molecules in the purple membrane is not required for light-to-dark adaptation.  相似文献   

11.
Proteins solubilized from enriched soybean root plasma membrane with sodium dodecyl sulphate (SDS) and selected non-denaturing detergents (octyl-β-d-glucopyranoside, Zwittergent 312, Zwittergent 314, Zonyl FSK, and Nonidet P-40) were electrophoresed in two-dimensions by standard procedures. The basic electrophoretogram ‘fingerprint’ was similar for all detergents tested. However, differences in the total number of polypeptides resolved and the presence or absence of certain polypeptides on specific two-dimensional gels indicated some selectivity. Of all detergents tested, SDS solubilized the most polypeptides (ca 95) and provided the best resolution. The other detergents solubilized 50–80 polypeptides with varying resolution. Of those tested, octyl-β-d-glucopyranoside consistently provided the best balance between the number of polypeptides resolved (ca 70) and the level of resolution. The results suggest that selected detergents may prove useful in plant plasma membrane studies which require non-denaturing conditions.  相似文献   

12.
Glycoproteins released from carrot cells into culture media were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by staining with Coomassie brilliant blue or with the periodic-acid Schiff procedure. The appearance or disappearance of two glycoproteins of Mr 65,000 (GP65) and Mr 57,000 (GP57) was closely related to the formation of somatic embroys. GP65 was released specifically from embryogenic cells cultured in a medium without 2,4-dichlorophenoxyacetic acid, in which they can form somatic embryos. GP57 was released from the same embryogenic cells, if they were cultured in a medium with 2,4-dichlorophenoxyacetic acid, in which they cannot form somatic embryos. Nonembryogenic cells which cannot form somatic embryos, released only GP57.  相似文献   

13.
Allophycocyanin II in its trimer form (α3β3) at pH 7.0 has an absorption maximum at 652 nm. This band is selectively reduced in intensity at pH 7.0 when various salts are added. The loss of 652 nm absorption follows the order: NaClO4 ? NaNO3 > NaBr > NaCl. When the NaClO4 concentration is in the range 0.6-1.0 m the 652-nm band is entirely lost, and sedimentation equilibrium and velocity studies suggest that the trimer is completely dissociated to monomers (αβ). Hydrophobic interactions appear to be important in maintaining the trimer. The monomer absorption maximum is at 616 nm. A series of experiments using these salts demonstrated at intermediate 652-nm intensities and the two extrema that an isobestic point at 626 nm is present which indicates an equilibrium between two species. Corresponding to the loss of 652 nm absorption is the disappearance of 661 nm fluorescence emission and the appearance of a new band at 642 nm. Removal of the NaClO4 by dialysis essentially restores the 652-nm absorption and 661-nm emission and the trimeric protein structure. The near ultraviolet region is only slightly perturbed during the loss of 652 nm absorption. In the absence of any additional salts these spectral changes also occur in pH 7.0 buffer at very low protein concentrations.  相似文献   

14.
In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters channel current kinetics.  相似文献   

15.
Photochemical reaction dynamics of the primary events in recombinant bacteriorhodopsin (bRrec) was studied by femtosecond laser absorption spectroscopy with 25-fs time resolution. bRrec was produced in an Escherichia coli expression system. Since bRrec was prepared in a DMPC–CHAPS micelle system in the monomeric form, its comparison with trimeric and monomeric forms of the native bacteriorhodopsin (bRtrim and bRmon, respectively) was carried out. We found that bRrec intermediate I (excited state of bR) was formed in the range of 100 fs, as in the case of bRtrim and bRmon. Further processes, namely the decay of the excited state I and the formation of intermediates J and K of bRrec, occurred more slowly compared to bRtrim, but similarly to bRmon. The lifetime of intermediate I, judging from the signal of ΔA ESA(470-480 nm), was 0.68 ps (78%) and 4.4 ps (22%) for bRrec, 0.52 ps (73%) and 1.7 ps (27%) for bRmon, and 0.45 ps (90%) and 1.75 ps (10%) for bRtrim. The formation time of intermediate K, judging from the signal of ΔA GSA(625-635 nm), was 13.5 ps for bRrec, 9.8 ps for bRmon, and 4.3 ps for bRtrim. In addition, there was a decrease in the photoreaction efficiency of bRrec and bRmon as seen by a decrease in absorbance in the differential spectrum of the intermediate K by ~14%. Since photochemical properties of bRrec are similar to those of the monomeric form of the native protein, bRrec and its mutants can be considered as a basis for further studies of the mechanism of bacteriorhodopsin functioning.  相似文献   

16.
In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters channel current kinetics.  相似文献   

17.
A homologous series of novel zwitterionic detergents, sulfobestaines (SBn), was examined for its ability to emulsify a triglyceride model system and to extract proteins from 3T6 mouse fibroblast membranes. In both instances the solubilization efficiency of SBns was found to improve with increasing alkyl chain length (n). The higher alkyl SBns (n ≥ 12) were shown to be superior to nonionic detergents of the polyoxyethelene type (e.g., Nonidet P-40) but inferior to the anionic SDS in their ability to solubilize 3T6 cell membrane proteins. However, unlike SDS, SBns apparently do not denature either water-soluble or membrane proteins, as judged by retention of enzymatic activity.  相似文献   

18.
Light-induced sodium extrusion from H halobium cell envelope vesicles proceeds largely through an uncoupler-sensitive pathway involving bacteriorhodopsin and a proton/sodium antiporter. Vesicles from bacteriorhodopsin-negative strains also extrude sodium ions during illumination, but this transport is not sensitive to uncouplers and has been proposed to involve a light-energized primary sodium pump. Proton uptake in such vesicles is passive, and under steady-state illumination the large electrical potential (negative inside) is just balanced by a pH difference (acid inside), so that the protonmotive force is near zero. Action spectra indicated that this effect of illumination is attributable to a pigment absorbing near 585 nm (of 568 for bacteriorhodopsin). Bleaching of the vesicles by prolonged illumination with hydroxylamine results in inactivation of the transport; retinal addition causes partial return of the activity. Retinal addition also causes the appearance of an absorption peak at 588 nm, while the absorption of free retinal decreases. The 588 nm pigment is present in very small quantities (0.13 nmole/mg protein), and behaves differently from bacteriorhodopsin in a number of respects. Vesicles can be prepared from bacteriorhodopsin-containing H halobium strains in which primary transport for both protons and sodium can be observed. Both pumps appear to cause the outward transport of the cations. The observations indicate the existence of a second retinal protein, in addition to bacteriorhodopsin, in H halobium, which is associated with primary sodium translocation. The initial proton uptake normally observed during illumination of whole H halobium cells may therefore be a passive flux in response to the primary sodium extrusion.  相似文献   

19.
Vinod K. Shah  Winston J. Brill 《BBA》1973,305(2):445-454
Extracts of Azotobacter vinelandii have been fractionated by simple techniques to obtain highly purified components of nitrogenase. The yield of each component is greater than 60%. Purified Component I has a specific activity of 1638 nmoles ethylene formed/min per mg protein. The spectrum of Component I exhibits a broad absorption between 300 and 600 nm, with no distinctive peaks or shoulders. Addition of sodium dithionite or exposure to air has no effect on the absorption spectrum. Component I, examined at 4.2 °K has EPR signals at g = 4.2, 3.65 and 2.01. Addition of sodium dithionite does not produce additional resonances nor does it alter the signals already present. Crystals of Component I are dark brown and needle-shaped.Purified Component II has a specific activity of 1815 nmoles ethylene formed/min per mg protein. The absorption spectrum has no peaks or shoulders between 390 and 650 nm. Upon exposure of Component II to air, absorption increases between 400 and 650 nm. Treatment of oxidized Component II with dithionite causes this absorption to fall below that of the native Component II. EPR spectra of Component II has signals at g values of 2.05, 1.94, and 1.88. Upon inactivation by O2, these signals disappear.Neither component by itself has detectable acetylene-reducing or N2-fixing activity. The ratio of acetylene reduced to N2 fixed is 3.86 with different ratios of the components. Both components form aggregated species upon exposure to air. Dithionite does not reverse this effect.  相似文献   

20.
The interaction of p-nitrophenol (p-NP), 2,4-dinitrophenol (DNP) (II) and 2,4,6-trinitrophenol (TNP)(III) with dipalmitoyllecithin in apolar solvents has been examined by IR and UV spectroscopy. Addition of any nitrophenol to the solution of lecithin in CCl4 causes disappearance of broad absorption band of water bound with lecithin phosphate grops (3150–3600 cm?1), which was accompanied by an insignificant increase of absorption near 3040 and 2800 cm?1. Association of phenolic groups of (I) with the lecithin was observed by disappearance of the free OH absorption band. In UV spectra of (I), complex formation with lecithin results in a 30 nm red shift of phenol long-wave absorption band and in the appearance of an isosbestic point at 303 nm. In the case of III, addition of the lecithin causes a red shift and strong hyperchromic effect, which is accompanied by the appearance of a new absorption band near 420 nm. It was concluded, that nitrophenols displace a part of water from the polar groups of lipids and form hydrogen bonded complexes or ion-pair structures, depending upon acidic properties of the proton donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号