首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以H2O2为中心的活性氧(reactive oxygen species,ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍特征,其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应,并与一系列信号转导过程相关联。作为关键的ROS产生酶,质膜NADPH氧化酶(plasma membrane NADPH oxidase,PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用,被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展,并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

2.
以H2O2为中心的活性氧(reactive oxygen species, ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍 特征, 其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应, 并与一系列信号转导过程相关联。作为关键的ROS产生酶, 质膜NADPH氧化酶(plasma membrane NADPH oxidase, PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用, 被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展, 并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

3.
植物过氧化物酶体在活性氧信号网络中的作用   总被引:2,自引:0,他引:2  
过氧化物酶体是高度动态、代谢活跃的细胞器,主要参与脂肪酸等脂质的代谢及产生和清除不同的活性氧(reactive oxygen species,ROS)。ROS是细胞有氧代谢的副产物。当胁迫长期作用于植物,过量的ROS会引起氧胁迫,损害细胞结构和功能的完整性,导致细胞代谢减缓,活性降低,甚至死亡;但低浓度的ROS则作为分子信号,感应细胞ROS/氧化还原变化,从而触发由环境因素导致的过氧化物酶体动力学以及依赖ROS信号网络改变而产生快速、特异性的应答。ROS也可以通过直接或间接调节细胞生长来控制植物的发育,是植物发育的重要调节剂。此外,过氧化物酶体的动态平衡由ROS、过氧化物酶体蛋白酶及自噬过程调节,对于维持细胞的氧化还原平衡至关重要。本文就过氧化物酶体中ROS的产生和抗氧化剂的调控机制进行综述,以期为过氧化物酶体如何感知环境变化,以及在细胞应答中,ROS作为重要信号分子的研究提供参考。  相似文献   

4.
有氧代谢不可避免产生活性氧(ROS),叶绿体的PSI和PSII反应中心均是ROS产生的主要位点。叶绿体产生的ROS主要有超氧阴离子(O2-)、过氧化氢(H2O2)、羟自由基(.OH)和单线氧(1O2),其中在PSI产生的O2-将进一步产生H2O2和.OH,而1O2产生在PSII。正常生理代谢条件下,叶绿体内抗氧化系统和光能吸收利用的调节保持活性氧产生和消灭的平衡,不会影响植物的正常生理功能。  相似文献   

5.
活性氧调控植物生长发育的研究进展   总被引:6,自引:0,他引:6  
林植芳  刘楠 《植物学报》2012,47(1):74-86
活性氧(ROS)是植物有氧代谢过程中的副产物, 它在植物的许多生命过程中均具有有害和有利的双重功能。ROS对细胞的氧化损伤作用和信号转导诱导植物防卫反应已有详尽的研究。近年来, 越来越多的关于ROS调控植物生长发育的证据开始引起了人们的广泛关注。细胞的生长是植物发育的重要部分, ROS通过直接或间接调节细胞的生长来控制植物的发育, 成为植物发育的重要调节剂。该文综述了羟自由基(.OH)及其前体超氧阴离子自由基(O2. )和过氧化氢(H2O2)调控植物生长发育的研究进展, 包括ROS调控植物不同器官生长的证据和机理、ROS产生的途径及其检测方法, 同时对今后的研究进行了展望。  相似文献   

6.
植物谷胱甘肽过氧化物酶(GPX)研究进展   总被引:1,自引:0,他引:1  
逆境胁迫会诱导植物产生过多的活性氧(ROS),引起氧化胁迫,严重影响其生长发育。相应地,植物为适应诸多不良环境会产生多种抗氧化剂、抗氧化酶等协调氧化还原平衡,其中谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)是植物体内重要的抗氧化酶之一。对近年来植物中GPX的结构、亚细胞定位、酶催化底物特点及作用研究进展进行综述,并对未来可能的研究方向进行展望。  相似文献   

7.
活性氧水平决定白血病细胞对三氧化二砷诱导凋亡的敏感性   总被引:11,自引:1,他引:10  
旨在探索三氧化二砷(As2O3)诱导白血病细胞株(NB4和U937)凋亡的敏感性与细胞活性氧(reactive oxy-gen species,ROS)水平的关系。以二甲萘醌(DMNQ)温育NB4和U937细胞,双氢罗丹明123(DHR)捕获ROS,流式细胞仪检测两种细胞ROS水平的差异。As2O3单独或联用DMNQ温育NB4和U937细胞,流式细胞仪及电镜检测凋亡并分析两种细胞凋亡敏感性的差异及其在用药前后的变化。结果显示,NB4的ROS水平明显高于U937,DMNQ可提高NB4和U937的ROS水平,诱发U937对As2O3的敏感性,增强As2O3促NB4细胞凋亡的效应,过氧化氢酶可逆转DMNQ的效应,结果提示,白血病细胞NB4和U937对As2O3促凋亡的敏感性决定于细胞固有的ROS水平。  相似文献   

8.
以2’,7’-二氯二氢荧光素二乙酯(dichlorofluorescein diacetate,H2DCF-DA)为荧光探针孵育拟南芥叶表皮条,利用荧光光谱和激光共聚焦扫描显微技术,对高辐照蓝光诱导下叶肉细胞活性氧(reactive oxygen spe-cies,ROS)的生成,进行了分子识别和亚细胞定位检测。结果表明:植物细胞在蓝光诱导下,可以产生大量的ROS。过氧化氢酶清除实验表明:高辐照蓝光诱导产生的ROS,主要成分是H2O2,并且主要定位在叶绿体和细胞膜上。  相似文献   

9.
活性氧(reactive oxygen species,ROS)是生物体有氧代谢产生的一类活性含氧化合物的总称,主要包括O2·-、H2O2、·OH等,机体细胞通过多种途径维持ROS产生与消解的动态平衡。近年的研究揭示ROS参与细胞正常的生理过程,与细胞的增殖、分化及凋亡密切相关。不同刺激诱导细胞产生的内源性ROS可作为第二信使,通过改变氧化还原状态调节增殖、分化和凋亡相关的信号转导通路中多种靶分子的活性,最终决定细胞的命运。  相似文献   

10.
菖蒲过氧化物酶测定条件的研究   总被引:3,自引:0,他引:3  
梁雪  贺锋  肖蕾  徐洪  吴振斌 《生物学杂志》2012,29(6):87-89,92
过氧化物酶是植物在低温等逆境条件下酶促防御系统的关键酶之一,其活性可以作为植物抗寒性的一个指标。以菖蒲为材料比较了反应体系、H2O2浓度、pH值及反应时间对过氧化物酶活性测定的影响。结果表明:过氧化物活性测定的较佳反应体系是3 mL;最佳H2O2浓度为0.1%;最佳磷酸缓冲液pH值为6.0;最佳反应时间为4min。该研究结果为人工湿地污水处理系统冬季植物的筛选与评价研究提供参考,对植物生理实验教学和相关科学研究有一定的参考价值。  相似文献   

11.
Environmental stresses are often associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H2O2), superoxide radical (O2?), hydroxyl radical (OH?). In plants, ROS are formed by the inevitable leakage of electrons onto O2 from the electron transport activities of chloroplasts, mitochondria, peroxisomes, vacuole and plasma membranes or as a byproduct of various metabolic pathways. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature. Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses is a matter of investigation.  相似文献   

12.
Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.  相似文献   

13.
Biotic and abiotic stress conditions produce reactive oxygen species (ROS) in plants causing oxidative stress damage. At the same time, ROS have additional signaling roles in plant adaptation to the stress. It is not known how the two seemingly contrasting functional roles of ROS between oxidative damage to the cell and signaling for stress protection are balanced. Research suggests that the plant growth regulator auxin may be the connecting link regulating the level of ROS and directing its role in oxidative damage or signaling in plants under stress. The objective of this review is to highlight some of the recent research on how auxin’s role is intertwined to that of ROS, more specifically H2O2, in plant adaptation to oxidative stress conditions.  相似文献   

14.
Reactive oxygen species (ROS) and reactive nitrogen species, particularly NO, are key components of diverse signaling networks in animals and plants. We have recently shown that epidermal cells of stigmas from a range of different angiosperms accumulate relatively large amounts of ROS, principally H2O2, whereas pollen produces NO. Importantly, ROS/H2O2 levels appeared reduced in stigma cells supporting developing pollen grains compared to cells without pollen grains attached. To explore a possible link between pollen NO production and reduced levels of stigmatic ROS/H2O2, we supplied stigmas with NO and observed an overall reduction in levels of stigmatic ROS/H2O2. These new and unexpected data suggest a potential new signaling role for ROS/H2O2 and NO in pollen-stigma recognition processes.Key Words: stigma, pollen, reactive oxygen species, hydrogen peroxide, nitric oxide, signaling, defense  相似文献   

15.
Abstract

Reactive oxygen species (ROS, partially reduced or activated derivatives of oxygen), are highly reactive and toxic and can lead to oxidative destruction of the cell. ROS production increases when plants are exposed to different kinds of stresses. The chief toxic effect of O2 ? and H2O2 resides in their ability to initiate cascade reactions that result in the production of the hydroxyl radical and other destructive species such as lipid peroxides. These dangerous cascades are prevented by efficient operation of the cell's antioxidant defenses. However, in addition to their role as toxic byproducts of aerobic metabolism, recently, a new role for ROS has been identified, i.e. the control and regulation of biological processes, such as growth, cell cycle, programmed cell death, hormone signaling, biotic and abiotic stress responses, and development. This review discusses the biochemical properties and sources and sites of ROS production, ROS-scavenging systems, and the role of ROS as signaling molecules.  相似文献   

16.

Background

Reactive oxygen species (ROS) are not only cytotoxic compounds leading to oxidative damage, but also signaling molecules for regulating plant responses to stress and hormones. Arabidopsis cytosolic ascorbate peroxidase 1 (APX1) is thought to be a central regulator for cellular ROS levels. However, it remains unclear whether APX1 is involved in plant tolerance to wounding and methyl jasmonate (MeJA) treatment, which are known to enhance ROS production.

Methods

We studied the effect of wounding and MeJA treatment on the levels of H2O2 and oxidative damage in the Arabidopsis wild-type plants and knockout mutants lacking APX1 (KO-APX1).

Results

The KO-APX1 plants showed high sensitivity to wounding and MeJA treatment. In the leaves of wild-type plants, H2O2 accumulated only in the vicinity of the wound, while in the leaves of the KO-APX1 plants it accumulated extensively from damaged to undamaged regions. During MeJA treatment, the levels of H2O2 were much higher in the leaves of KO-APX1 plants. Oxidative damage in the chloroplasts and nucleus was also enhanced in the leaves of KO-APX1 plants. These findings suggest that APX1 protects organelles against oxidative stress by wounding and MeJA treatment.

General significance

This is the first report demonstrating that H2O2-scavenging in the cytosol is essential for plant tolerance to wounding and MeJA treatment.  相似文献   

17.
Reactive oxygen species (ROS) have pleiotropic effects in plants. ROS can lead to cellular damage and death or play key roles in control and regulation of biological processes, such as programmed cell death (PCD). This dual role of ROS, as toxic or signalling molecules, is possible because plant antioxidant system (AS) is able to achieve a tight control over ROS cellular levels, balancing properly their production and scavenging. AS response in plant PCD has been clearly described only in the hypersensitive response in incompatible plant–pathogen interactions and in the senescence process and has not been completely unravelled. In sycamore (Acer pseudoplatanus L.) cultured cells PCD can be induced by Fusicoccin (Fc), Tunicamycin (Tu), and Brefeldin A (Ba). These chemicals induce comparable PCD time course and extent, while H2O2 production is detectable only in Fc- and, to a lesser extent, in Ba-treated cells. In this paper the AS has been investigated during PCD of sycamore cells, measuring the effects of the three inducers on the cellular levels of non-enzymatic and enzymatic antioxidants. Results show that the AS behaviour is different in the PCD induced by the three chemicals. In Fc-treated cells AS is mainly devoted to decrease the concentration of toxic intracellular H2O2 levels. On the contrary, in cells treated with Tu and Ba, the cell redox state is shifted to a more reduced state and the enzymatic AS is partially down-regulated, allowing ROS to act as signalling molecules.  相似文献   

18.
19.
Abiotic stresses, such as drought, can increase the production of reactive oxygen species (ROS) in plants. An increase in ROS levels can provoke a partial or severe oxidation of cellular components inducing redox status changes, so continuous control of ROS and therefore of their metabolism is decisive under stress conditions. The present work focuses on the contribution of one pro-oxidant, hydrogen peroxide (H2O2) and one antioxidant, ascorbate (AA) and its redox status, in the control of plant responses to drought-oxidative stress in resistant plants growing in field conditions. After a general introduction to the concept of drought and oxidative stress and its relationship, we describe the role of H2O2 in drought stress responses, emphasizing the importance of studies in H2O2 subcellular localization, needed for a better understanding of its role in plant responses to stress. Although more studies are needed in the study of changes of redox status in plants subjected to stress, the AA pools and its redox status can be indicative of its involvement as a part of cellular mechanisms by which the plant respond to drought-induced oxidative stress. The mechanism of resistance and/or tolerance to drought-oxidative stress is complex, especially when studies are carried out in plants growing in field conditions, where an interaction of stresses occurs. This study sheds light on the mechanisms of plant responses to water-oxidative stress in plants growing in the field.  相似文献   

20.
Cadmium is a toxic metal that produces disturbances in plant antioxidant defences giving rise to oxidative stress. The effect of this metal on H2O2 and O2·? production was studied in leaves from pea plants growth for 2 weeks with 50 µm Cd, by histochemistry with diaminobenzidine (DAB) and nitroblue tetrazolium (NBT), respectively. The subcellular localization of these reactive oxygen species (ROS) was studied by cytochemistry with CeCl3 and Mn/DAB staining for H2O2 and O2·?, respectively, followed by electron microscopy observation. In leaves from pea plants grown with 50 µm CdCl2 a rise of six times in the H2O2 content took place in comparison with control plants, and the accumulation of H2O2 was observed mainly in the plasma membrane of transfer, mesophyll and epidermal cells, as well as in the tonoplast of bundle sheath cells. In mesophyll cells a small accumulation of H2O2 was observed in mitochondria and peroxisomes. Experiments with inhibitors suggested that the main source of H2O2 could be a NADPH oxidase. The subcellular localization of O2·? production was demonstrated in the tonoplast of bundle sheath cells, and plasma membrane from mesophyll cells. The Cd‐induced production of the ROS, H2O2 and O2·?, could be attributed to the phytotoxic effect of Cd, but lower levels of ROS could function as signal molecules in the induction of defence genes against Cd toxicity. Treatment of leaves from Cd‐grown plants with different effectors and inhibitors showed that ROS production was regulated by different processes involving protein phosphatases, Ca2+ channels, and cGMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号