首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 106 毫秒
1.
The number of sires fertilizing a given dam is a key parameter of the mating system in species with spatially restricted offspring dispersal, since genetic relatedness among maternal sibs determines the intensity of sib competition. In flowering plants, the extent of multiple paternity is determined by factors such as floral biology, properties of the pollen vector, selfing rate, spatial organization of the population, and genetic compatibility between neighbours. To assess the extent of multiple paternity and identify ecological factors involved, we performed a detailed study of mating patterns in a small population of a self-incompatible clonal herb, Arabidopsis halleri . We mapped and genotyped 364 individuals and 256 of their offspring at 12 microsatellite loci and jointly analysed the level of multiple paternity, pollen and seed dispersal, and spatial genetic structure. We found very low levels of correlated paternity among sibs ( P full-sib = 3.8%) indicating high multiple paternity. Our estimate of the outcrossing rate was 98.7%, suggesting functional self-incompatibility. The pollen dispersal distribution was significantly restricted (mean effective pollen dispersal distance: 4.42 m) but long-distance successful pollination occurred and immigrating pollen was at most 10% of all pollination events. Patterns of genetic structure indicated little extent of clonal reproduction, and a low but significant spatial genetic structure typical for a self-incompatible species. Overall, in spite of restricted pollen dispersal, the multiple paternity in this self-incompatible species was very high, a result that we interpret as a consequence of high plant density and high pollinator service in this population.  相似文献   

2.
The spatial distribution of clonal versus sexual reproduction in plant populations should generally have differing effects on the levels of biparental inbreeding and the apparent selfing rate, produced via mating by proximity through limited pollen dispersal. We used allozyme loci, join-count statistics, and Moran's spatial autocorrelation statistics to separate the spatial genetic structure caused by clonal reproduction from that maintained in sexually reproduced individuals in two populations of Adenophora grandiflora, a perennial herb. Join-count statistics showed that there were statistically significant clustering of clonal genotypes within distances less than 4 m. Both the entire populations and the sets of sexually reproduced individuals exhibited significant spatial autocorrelation at less than about 12 m, and the sexually reproduced individuals are substantially structured in an isolation-by-distance manner, consistent with a neighborhood size of about 50.  相似文献   

3.
In plant species, when clonal growth produces a patchy structure and flowering ramets are clustered, the amount of pollen contributing to reproductive success is often regulated by pollinator efficiency and geitonogamy. The spatial population structure may influence reproductive success. We examined the clonal structure, the spatial ramet distribution, and their combined effects on fruit set in a natural population of the insect-pollinated, self-incompatible clonal herb, Convallaria keiskei, in northern Japan. The number of shoots, flowers, and fruits in 1-m2 quadrats were counted at every 5 m grid point in an established 100 × 90-m study plot. From all the quadrats where shoots existed, leaf samples were collected for allozyme analysis. Using the two spatial parameters of flowering ramet densities and genotypes, we then constructed individual-based fruit-set models. A total of 236 quadrats contained shoots, and 135 contained flowering ramets, which indicated expanded distribution of this plant throughout the study plot, while shoots, flowers and fruits all showed clustering distributions. Allozyme analysis of 282 samples revealed 94 multilocus genotypes. The largest clone extended to more than 40 m, whereas 56 genotypes were detected in only one sample. Several large clones and many small clones were distributed close to each other. Fine-scale spatial modelling revealed that the neighbouring flower numbers of different genotypes, compared with local genet or flower diversity, more influenced fruit set, in which the range of the neighbour was 14.5 m. These findings indicate that the compatible pollen dispersed by insect pollinators has a significant effect on sexual reproduction, in this C. keiskei population. Consequently, the spatial structure, which includes both genet distribution and clonal expansion by ramets, had a significant effect on pollination success.  相似文献   

4.
In many species, inbred individuals have reduced fitness. In plants with limited pollen and seed dispersal, post-pollination selection may reduce biparental inbreeding, but knowledge on the prevalence and importance of pollen competition or post-pollination selection after non-self pollination is scarce. We tested whether post-pollination selection favours less related pollen donors and reduces inbreeding in the dioecious plant Silene latifolia. We crossed 20 plants with pollen from a sibling and an unrelated male, and with a mix of both. We found significant inbreeding depression on vegetative growth, age at first flowering and total fitness (22% in males and 14% in females). In mixed pollinations, the unrelated male sired on average 57% of the offspring. The greater the paternity share of the unrelated sire, the larger the difference in relatedness of the two males to the female. The effect of genetic similarity on paternity is consistent with predictions for post-pollination selection, although paternity, at least in some crosses, may be affected by additional factors. Our data show that in plant systems with inbreeding depression, such as S. latifolia, pollen or embryo selection after multiple-donor pollination may indeed reduce inbreeding.  相似文献   

5.
Abstract.— The plant genera in which natural hybridization is most prevalent tend to be outcrossing perennials with some mechanism for clonal (i.e., asexual) reproduction. Although clonal reproduction in fertile, sexually reproducing hybrid populations could have important evolutionary consequences, little attention has been paid to quantifying this parameter in such populations. In the present study, we examined the frequency and spatial patterning of clonal reproduction in two Louisiana iris hybrid populations. Allozyme analysis of both populations revealed relatively high levels of genotypic diversity. However, a considerable amount of clonality was apparent. Nearly half of all genets (47%) in one population and more than half (61%) in the other had multiple ramets. Furthermore, both populations exhibited relatively high levels of genetic structuring, a pattern that resulted from the aggregation of clonal ramets. The occurrence of clonal reproduction in hybrid populations could not only facilitate introgression through an increase in the number of flowering ramets per genet and/or the survivorship of early generation hybrids, but might also influence the mating system of such populations. Any potential increase in the selfing rate due to cross-pollination among ramets of the same genet may, in turn, increase the likelihood of homoploid hybrid speciation.  相似文献   

6.
Information on reproduction and life history is important for the conservation of endangered plants. We investigated rates of flowering, seed set, and germination in populations of the endangered perennial plant Sedum integrifolium ssp. leedyi. Germination and flowering rates differed significantly among populations, but seed set rate did not. We assayed 26 plant clusters (81 stems) from four of the five known populations for evidence of clonal reproduction using 28 randomly amplified polymorphic DNA (RAPD) markers. Of the 81 stems, 75 had unique genotypes and three pairs had identical genotypes, suggesting that clonal reproduction is infrequent. Flowering, seed set, and germination rates were correlated with our estimates of ratios of effective to actual population sizes (Ne/N), but not with Ne. The single formally protected population may be experiencing inbreeding depression. We grew plants from seed to maturity in a greenhouse, with a germination rate of 77% and survival of 98% of the germinants at 6 mo, suggesting that this will be a viable means of ex situ propagation. Plants flowered 4-6 mo after germination and produced mature fruits 1-2 mo later, suggesting that they have the potential to sexually reproduce in their first or second season of growth.  相似文献   

7.
The reproductive system of hybrids is an important factor shaping introgression dynamics within species complexes. We combined paternity and parentage analyses with previous species characterization by genetic assignment, to directly identify reproductive events that occurred within a stand comprising four European white oak species. Comparing species status of parent pairs provided a precise quantification of hybridization rate, backcrosses, and intraspecific matings in two life stages. The detailed mating system analysis revealed new findings on the dynamics of interspecific gene flow. First, hybrids acted successfully as both male and female during reproduction. They produced acorns and seedlings that were as viable as those sired by purebreds. Second, species maintenance could be due to a relatively low level of interspecific mating contrasting with a large proportion of intraspecific crosses and backcrosses. Despite a high proportion of hybrids and extensive interspecific gene flow, partial species integrity is maintained by genetically controlled pollen discrimination, ensuring preferential matings within purebreds and high parental species fidelity in hybrid reproduction, which impedes complete collapse into a continuous hybrid swarm. Finally, we showed that pollen from the different species had unequal contributions to reproduction suggesting that introgression processes could ultimately lead to extirpation or expansion of some species.  相似文献   

8.
Unisexual vertebrates (i.e., those produced through clonal or hemiclonal reproduction) are typically incapable of purging deleterious mutations, and, as a result, are considered short-lived in evolutionary terms. In hemiclonal reproduction (hybridogenesis), one parental genome is eliminated during oogenesis, producing haploid eggs containing the genome of a single parent. Hemiclonal hybrids are usually produced by backcrossing hemiclonal hybrids with males of the paternal species. When hemiclonal hybrids from a genus of greenlings (Hexagrammos) are crossed with males of the maternal species, the progeny are phenotypically similar to the maternal species and produce recombinant gametes by regular meiosis. The present study was conducted to determine if the hemiclonal genome is returned to the gene pool of the maternal species in the wild. Using a specific cytogenetic marker to discriminate between such progeny and the maternal species, we observed that Hexagrammos hybrids mated with maternal and paternal ancestors at the same frequency. This two-way backcrossing in which clonal genomes are returned to the gene pool where they can undergo recombination plays an important role in increasing the genetic variability of the hemiclonal genome and reducing the extinction risk. In this way, hybrid lineages may have survived longer than predicted through occasional recombinant generation.  相似文献   

9.
Using highly polymorphic microsatellite markers, we assessed clonal structure and paternity in a population of the bryophyte species Polytrichum formosum. Identical multilocus genotypes of individual shoots were almost never observed in spatially separated cushions, but were found to be highly clustered within moss cushions. Therefore, asexual reproduction through dispersal of gametophyte fragments is not very important in P. formosum. However, asexual reproduction on a very localized scale through vegetative growth of genets (branching of gametophytes via clonal growth of rhizomes) is very extensive. The patchy spatial distribution of genets and the absence of intermingling among genets suggest that this species follows a 'phalanx' clonal growth strategy. Vegetative proliferation of genets will increase their size, and, consequently, will have considerable fitness consequences for individuals in terms of increased genet longevity and reproductive output. Although paternity analysis of sporophytes confirmed male genet size, i.e. gamete production, to be an important determinant of male reproductive fitness, it also showed that the spatial distance to female genets is the predominant factor that governs male reproductive success. Moreover, we showed that male gamete dispersal distances in P. formosum are much further than generally assumed, and are in the order of metres rather than centimetres. Combining the findings, we conclude that the high genotypic diversity observed for this facultatively clonal species is most likely explained by a preponderance of sexual reproduction over clonal reproduction.  相似文献   

10.
The ultimate importance of paternal contributions to fitness and of post-pollination selection in flowering plants have remained elusive, largely because of the technical difficulty of assigning paternity. I review empirical studies that use heritable markers to investigate per-fruit seed paternity in natural populations and after experimental multiple-donor pollination. Thirty-one studies covering 23 species from 16 plant families document that in natural populations seeds from a single fruit are often fathered by multiple pollen donors (5 species from 5 families), that donors can differ significantly in seed-siring success (8 species from 6 families), that variation in pollen tube growth rates can be heritable (n = 1 out of 4 studies), that donor and recipient genotypes can simultaneously affect paternity (n = 2), and that temporal order of pollen deposition (n = 1) and environmental effects(n = 2) affect the outcome of pollen competition. These studies also investigate the role of post-pollination selection in the avoidance of inbreeding and for species boundaries. Most studies of male reproductive success in plants to date base on isozyme electrophoresis. The availability in the last decade of highly polymorphic molecular markers such as microsatellite DNA has been expected to open new possibilities to investigate competition and selection during the gametophytic phase. Yet, to date, there is still need for greater data wealth on seed paternity to test theories of sex allocation and to gain deeper understanding of floral trait evolution and of the evolutionary consequences of post-pollination selection in flowering plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号