首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
Gram-positive bacteria have been widely investigated for their huge capability to secrete proteins, such as those involved in gene expression, bacterial surface display and bacterial pathogenesis. The N-terminal signal peptide of a secretory protein is responsible for the translocation of polypeptide through the cytoplasmic membrane. Recently, the signal peptide prediction has become a major task in bioinformatics, and many programs with different algorithms were developed to predict signal peptides. In this paper, five prediction programs (SignalP 3.0, PrediSi, Phobius, SOSUIsignal and SIG-Pred) were selected to evaluate their prediction accuracy for signal peptides and cleavage site using 509 unbiased and experimentally verified Gram-positive protein sequences. The results showed that SignalP was the most accurate program in signal peptide (96% accuracy) and cleavage site (83%) prediction. Prediction performance could further be improved by combining multiple methods into consensus prediction, which would increase the accuracy to 98%, and decrease the false positive to zero. When the consensus method was used to predict Bacillus’s extracellular proteins identified by proteomics, more new signal peptides were successfully identified. It could be concluded that the consensus method would be useful to make prediction of signal peptides more reliable.  相似文献   

2.
3.
Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type, segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of 0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are available at http://www.yeastrc.org/pdr.  相似文献   

4.
Prediction of protein sorting signals from the sequence of amino acids has great importance in the field of proteomics today. Recently, the growth of protein databases, combined with machine learning approaches, such as neural networks and hidden Markov models, have made it possible to achieve a level of reliability where practical use in, for example automatic database annotation is feasible. In this review, we concentrate on the present status and future perspectives of SignalP, our neural network-based method for prediction of the most well-known sorting signal: the secretory signal peptide. We discuss the problems associated with the use of SignalP on genomic sequences, showing that signal peptide prediction will improve further if integrated with predictions of start codons and transmembrane helices. As a step towards this goal, a hidden Markov model version of SignalP has been developed, making it possible to discriminate between cleaved signal peptides and uncleaved signal anchors. Furthermore, we show how SignalP can be used to characterize putative signal peptides from an archaeon, Methanococcus jannaschii. Finally, we briefly review a few methods for predicting other protein sorting signals and discuss the future of protein sorting prediction in general.  相似文献   

5.
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies.  相似文献   

6.
Over the last 5 years proteogenomics (using mass spectroscopy to identify proteins predicted from genomic sequences) has emerged as a promising approach to the high‐throughput identification of protein N‐termini, which remains a problem in genome annotation. Comparison of the experimentally determined N‐termini with those predicted by sequence analysis tools allows identification of the signal peptides and therefore conclusions on the cytoplasmic or extracytoplasmic (periplasmic or extracellular) localization of the respective proteins. We present here the results of a proteogenomic study of the signal peptides in Escherichia coli K‐12 and compare its results with the available experimental data and predictions by such software tools as SignalP and Phobius. A single proteogenomics experiment recovered more than a third of all signal peptides that had been experimentally determined during the past three decades and confirmed at least 31 additional signal peptides, mostly in the known exported proteins, which had been previously predicted but not validated. The filtering of putative signal peptides for the peptide length and the presence of an eight‐residue hydrophobic patch and a typical signal peptidase cleavage site proved sufficient to eliminate the false‐positive hits. Surprisingly, the results of this proteogenomics study, as well as a re‐analysis of the E. coli genome with the latest version of SignalP program, show that the fraction of proteins containing signal peptides is only about 10%, or half of previous estimates.  相似文献   

7.
We describe and validate a new membrane protein topology prediction method, TMHMM, based on a hidden Markov model. We present a detailed analysis of TMHMM's performance, and show that it correctly predicts 97-98 % of the transmembrane helices. Additionally, TMHMM can discriminate between soluble and membrane proteins with both specificity and sensitivity better than 99 %, although the accuracy drops when signal peptides are present. This high degree of accuracy allowed us to predict reliably integral membrane proteins in a large collection of genomes. Based on these predictions, we estimate that 20-30 % of all genes in most genomes encode membrane proteins, which is in agreement with previous estimates. We further discovered that proteins with N(in)-C(in) topologies are strongly preferred in all examined organisms, except Caenorhabditis elegans, where the large number of 7TM receptors increases the counts for N(out)-C(in) topologies. We discuss the possible relevance of this finding for our understanding of membrane protein assembly mechanisms. A TMHMM prediction service is available at http://www.cbs.dtu.dk/services/TMHMM/.  相似文献   

8.
MOTIVATION: Knowledge of the transmembrane helical topology can help identify binding sites and infer functions for membrane proteins. However, because membrane proteins are hard to solubilize and purify, only a very small amount of membrane proteins have structure and topology experimentally determined. This has motivated various computational methods for predicting the topology of membrane proteins. RESULTS: We present an improved hidden Markov model, TMMOD, for the identification and topology prediction of transmembrane proteins. Our model uses TMHMM as a prototype, but differs from TMHMM by the architecture of the submodels for loops on both sides of the membrane and also by the model training procedure. In cross-validation experiments using a set of 83 transmembrane proteins with known topology, TMMOD outperformed TMHMM and other existing methods, with an accuracy of 89% for both topology and locations. In another experiment using a separate set of 160 transmembrane proteins, TMMOD had 84% for topology and 89% for locations. When utilized for identifying transmembrane proteins from non-transmembrane proteins, particularly signal peptides, TMMOD has consistently fewer false positives than TMHMM does. Application of TMMOD to a collection of complete genomes shows that the number of predicted membrane proteins accounts for approximately 20-30% of all genes in those genomes, and that the topology where both the N- and C-termini are in the cytoplasm is dominant in these organisms except for Caenorhabditis elegans. AVAILABILITY: http://liao.cis.udel.edu/website/servers/TMMOD/  相似文献   

9.
Genomics and proteomics have added valuable information to our knowledgebase of the human biological system including the discovery of therapeutic targets and disease biomarkers. However, molecular profiling studies commonly result in the identification of novel proteins of unknown localization. A class of proteins of special interest is membrane proteins, in particular plasma membrane proteins. Despite their biological and medical significance, the 3-dimensional structures of less than 1% of plasma membrane proteins have been determined. In order to aid in identification of membrane proteins, a number of computational methods have been developed. These tools operate by predicting the presence of transmembrane segments. Here, we utilized five topology prediction methods (TMHMM, SOSUI, waveTM, HMMTOP, and TopPred II) in order to estimate the ratio of integral membrane proteins in the human proteome. These methods employ different algorithms and include a newly-developed method (waveTM) that has yet to be tested on a large proteome database. Since these tools are prone for error mainly as a result of falsely predicting signal peptides as transmembrane segments, we have utilized an additional method, SignalP. Based on our analyses, the ratio of human proteins with transmembrane segments is estimated to fall between 15% and 39% with a consensus of 13%. Agreement among the programs is reduced further when both a positive identification of a membrane protein and the number of transmembrane segments per protein are considered. Such a broad range of prediction depends on the selectivity of the individual method in predicting integral membrane proteins. These methods can play a critical role in determining protein structure and, hence, identifying suitable drug targets in humans.  相似文献   

10.
【目的】内生菌普遍存在于植物中,与宿主在长期的进化中形成了互利共生的关系。目前对内生菌和植物之间的互作机制研究较少,为深入了解银杏叶内生菌KM-1-2与寄主植物作用机制,本研究对其分泌蛋白进行预测,并明确其特征。【方法】组合使用信号肽分析软件Signal P,跨膜螺旋结构分析软件TMHMM 2.0和Phobius,蛋白质细胞定位软件PSORT,亚细胞定位软件Target P和GPI锚定位点分析软件big-PI Predictor,预测KM-1-2基因组范围内所有分泌蛋白,定义为分泌组。【结果】KM-1-2全基因组5299条蛋白序列中发现271个具有典型信号肽的分泌蛋白,占全基因组的2.4%;编码这些蛋白的ORF最短为61 bp,最大为2105 bp,平均为373 bp;引导它们的信号肽长度分布在15–37 aa之间,平均为24 aa。信号肽中出现频率最高的氨基酸依次为丙氨酸、亮氨酸和缬氨酸,信号肽切割类型多属于A-X-A型,即SPI切割类型。共66个蛋白质有功能描述,其中包括26个酶类。这些酶主要包括各种糖苷水解酶、酯酶、蛋白酶、碳氧裂解酶等。【结论】通过上述生物信息学分析方法有效实现了银杏叶内生菌KM-1-2分泌蛋白的预测,这些分泌蛋白功能涉及较多的酶类以及其他未知功能,为进一步研究内生菌和植物的互作提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号