首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of O·-2 reaction with semi-oxidized tryptophan radicals in lysozyme, Trp·(Lyz) have been investigated at various pHs and conformational states by pulse radiolysis. The Trp·(Lyz) radicals were formed by Br·-2 oxidation of the 3-4 exposed Trp residues in the protein. At pH lower than 6.2, the apparent bimolecular rate is about 2 × 108M-1s-1; but drops to 8 × 107M-1s-1 or less above pH 6.3 and in CTAC micelles. Similarly, the apparent bimolecular rate constant for the intermolecular Trp·(Lyz) + Trp·(Lyz) recombination reaction is about (4-7 × 106M-1s-1) at/or below pH 6.2 then drops to 1.3-1.6 × 106M-1s-1 at higher pH or in micelles. This behavior suggests important conformational and/or microenvironmental rearrangement with pH, leading to less accessible semioxidized Trp· residues upon Br·-2 reaction. The kinetics of Trp·(Lyz) with ascorbate, a reducing species rather larger than O·-2 have been measured for comparison. The well-established long range intramolecular electron transfer from Tyr residues to Trp radicals-leading to the repair of the semi-oxidized Trp·(Lyz) and formation of the tyrosyl phenoxyl radical is inhibited by the Trp·(Lyz)+O·-2 reaction, as is most of the Trp·(Lyz)+Trp·(Lyz) reaction. However, the kinetic behavior of Trp·(Lyz) suggests that not all oxidized Trp residues are involved in the intermolecular recombination or reaction with O·-2. As the kinetics are found to be quite pH sensitive, this study demonstrates the effect of the protein conformation on O·-2 reactivity. To our knowledge, this is the first report on the kinetics of a protein-O·-2 reaction not involving the detection of change in the redox state of a prosthetic group to probe the reactivity of the superoxide anion.  相似文献   

2.
The reaction of the superoxide radical anion (O2), with the semi-oxidized tryptophan neutral radical (Trp·) generated from tryptophan (Trp) by pulse radiolysis has been observed in a variety of functionalized Trp derivatives including peptides. It is found that the reaction proceeds 4–5 times faster in positively charged peptides, such as Lys-Trp-Lys, Lys-Gly-Trp-Lys and Lys-Gly-Trp-Lys-O-tert-butyl, than in solutions of the negatively charged N-acetyl tryptophan (NAT). However, the reactivity of O2 with the Trp· radical is totally inhibited upon binding of these peptides to micelles of negatively charged SDS and is reduced upon binding to native DNA. By contrast, no change in reactivity is observed in a medium containing CTAB, where the peptides cannot bind to the positively charged micelles. On the other hand, the reactivity of the Trp· radical formed from NAT with O2 is reduced to half that of the free Trp· in buffer but is markedly increased in CTAB micelles. The models studied here incorporate elements of the complex environment in which Trp· and O2 may be concomitantly formed in biological system and demonstrate the magnitude of the influence such elements may have on the kinetics of reactions involving these two species.  相似文献   

3.
From pulse radiolysis measurements in oxygenated aqueous solution, the semioxidized tryptophan radical (Trp·— formed by the one-electron oxidation of Trp by Br2- radical—has been shown to oxidize the superoxide radical anion with a rate constant of k = 2 × 109 M−1 s−1. Proof of this reaction is found in addition of superoxide dismutase (SOD) to the system, which totally eliminates the contribution of the Trp· + O2- mechanism to Trp· decay. Little, if any, reaction of molecular oxygen with Trp· may be observed on the time scale of the pulse radiolysis experiment.  相似文献   

4.
The kinetics of several processes involving the potential antioxidant role of urate in physiological systems have been investigated by pulse radiolysis. While the monoanionic urate radical, ·UH-, can be produced directly by oxidation with ·Br-2 or ·OH, it can also be generated by oxidation with the neutral tryptophan radical, ·Trp, with a rate constant of 2 × 107 M-1s-1. This radical, ·UH-, reacts with ·O-2 with a rate constant of 8 × 108 M-1s-1. Also, ·UH- is reduced by flavonoids, quercetin and rutin in CTAB micelles at rate constants of 6 × 106 M-1s-1 and 1 × 106 M-1s-1, respectively. These results can be of value by providing reference data useful in further investigation of the antioxidant character of urate in more complex biological systems.  相似文献   

5.
Objective and Methods Endothelium produces oxygen-derived free radicals which play a major role in vessel wall physiology and pathology. Whereas NO· production from endothelium has been extensively characterized, little is known about endothelium-derived O2. In the present study, we determined the O2 production of bovine aortic endothelial cells (BAEC) using the spin trap 5,5-dimethyl-1 pyrroline-N-oxide (DMPO) and electron spin resonance (ESR) spectroscopy.

Results An ESR adduct DMPO-OH detected in the supernatant of BAEC after stimulation with the calcium ionophore A23187 originated from the trapping of extracellular O2, because coincubation with superoxide dismutase (30 U/ml) completely suppressed the ESR signal, whereas catalase (2000 U/ml) had no effect. A23187 stimulated extracellular O2 production in a time- and dose-dependent manner. The coenzymes NADH and NADPH both increased the ESR signal, whereas a flavin antagonist, diphenylene iodonium, abolished the ESR signal. Phorbol myristate acetate potentiated, whereas bisindolylmaleimide I inhibited the A23187-stimulated O2 production, suggesting the involvement of protein kinase C. These signals were not altered L-NAME, a NO-synthase inhibitor, suggesting that the endogenous production of NO· did not alter O2 production. Finally, the amount of O2 generated by A23187-stimulated post-confluent BAEC was one order of magnitude higher than that evoked by rat aortic smooth muscle cells stimulated under the same conditions.  相似文献   

6.
Neutral tryptophan (*Trp) and tyrosine (TyrO(*)) radicals are repaired by certain flavonoids in buffer, in micelles and in human serum albumin (HSA) with corresponding formation of semioxidized flavonoid radicals. In deaerated buffer, *Trp but not TyrO(*) radicals react with catechin. In micelles, quercetin and rutin repair both *Trp and TyrO(*) radicals. In addition to amino acid reactivity, microenvironmental factors and nature of the flavonoids govern this repair. Electron transfer efficiencies from quercetin to negatively charged *Trp radicals are 100% in the micellar pseudophases of positively charged cetyltrimethylammonium bromide, (CTAB), and neutral Triton X100 (TX100), but 55% in negatively charged sodium dodecyl sulfate (SDS). In oxygen-saturated CTAB micelles, quercetin also reacts with the superoxide radical anion. When bound to domain IIA of HSA, quercetin repairs, by intra- or intermolecular encounter, less than 20% of oxidative damage to HSA. Quercetin can also repair freely circulating oxidized molecules with repair efficiencies falling to 7% for oxidized Trp, Tyr and alpha-MSH and to less than 2% for urate radical. This limited effectiveness is attributed both to the inaccessibility of bound quercetin and rutin toward radicals of circulating molecules and to the diffusion-controlled recombination of these radicals.  相似文献   

7.
Neutral tryptophan (*Trp) and tyrosine (TyrO(*)) radicals are repaired by certain flavonoids in buffer, in micelles and in human serum albumin (HSA) with corresponding formation of semioxidized flavonoid radicals. In deaerated buffer, *Trp but not TyrO(*) radicals react with catechin. In micelles, quercetin and rutin repair both *Trp and TyrO(*) radicals. In addition to amino acid reactivity, microenvironmental factors and nature of the flavonoids govern this repair. Electron transfer efficiencies from quercetin to negatively charged *Trp radicals are 100% in the micellar pseudophases of positively charged cetyltrimethylammonium bromide, (CTAB), and neutral Triton X100 (TX100), but 55% in negatively charged sodium dodecyl sulfate (SDS). In oxygen-saturated CTAB micelles, quercetin also reacts with the superoxide radical anion. When bound to domain IIA of HSA, quercetin repairs, by intra- or intermolecular encounter, less than 20% of oxidative damage to HSA. Quercetin can also repair freely circulating oxidized molecules with repair efficiencies falling to 7% for oxidized *Trp, Tyr and alpha-MSH and to less than 2% for urate radical. This limited effectiveness is attributed both to the inaccessibility of bound quercetin and rutin toward radicals of circulating molecules and to the diffusion-controlled recombination of these radicals.  相似文献   

8.
The kinetics of the reaction of hydrated electron (eaq) and carboxyl anion radical (CO2) with Pseudomonas aeruginosa ferricytochrome c-551 were studied by pulse radiolysis. The rate of reaction of eaq with the negatively charged ferricytochrome c-551 (17 nM−1 · s−1) is significantly slower than the larger positively charged horse heart ferricytochrome c (70 nM · s). This difference cannot be explained solely by electrostatic effects on the diffusion-controlled reactions. After the initial encounter of eaq with the protein, ferricytochrome c-551 is less effective in transferring an electron to the heme which may be due to the negative charge on the protein. The charge on ferricytochrome c-551 is estimated to be −5 at pH 7 from the effect of ionic strength on the reaction rate. A slower relaxation (2 · 104 s−1) observed after fast eaq reduction is attributed to a small conformational change. The rate of reaction of CO2 with ferricytochrome c-551 (0.7 nM−1 · s) is, after electrostatic correction, the same as ferricytochrome c, indicating that the steric requirements for reaction are similar. This reaction probably takes place through the exposed heme edge.  相似文献   

9.
Nitrogen dioxide radical (NO·2) is known as a toxic agent produced in the metabolism of nitrates and nitrites. By the use of the pulse radiolysis technique, the mechanism of the reaction of NO·2 radical with hydroxycinnamic acid derivatives (HCA) was studied and the rate constants have been measured. The rate constants were found to be 7.4 × 108, 7.2 × 108, 8.6 × 108 dm3 mol-1s-1 for ferulic acid, sinapic acid and caffeic acid, respectively. The reactions produce the corresponding phenoxyl radical.  相似文献   

10.
The influence of fatty acid (FA) micelles on cytochrome c(cyt.c) reduction and nitroblue tetrazolium (NBT) reduction assays for SOD activity, which continue to be widely used, has been studied. In the presence of FA micelles, the use of cyt.c reduction assay was found to overestimate the real activity of SOD. This effect is attributed to the following reasons. 1. The FA micelles lead to the denaturation of cyt.c, which gives rise to suppression of the reactivity of ferricyt.c (cyt.c(ox)) towards O2-. Furthermore, this denaturation increases the reoxidation rate of ferrocyt.c, and consequently the reoxidation causes a decreased rate of cyt.c(ox) reduction. 2. Positively charged cyt.c(ox) interacts with negatively charged FA micelles, and so cyt.c(ox) on the surface of FA micelles reacts less with negatively charged O2- because of electrostatic repulsion. Also in NBT reduction assay using a positively charged probe molecule, FA micelles cause the appearance of enhancement of SOD activity, due to suppression of the reactivity of NBT towards O2- by electrostatic repulsion. However, in both chemiluminescence assay using the uncharged probe molecule and LDH-N ADH assay using the negatively charged probe molecule, FA micelles cannot influence the assays of the SOD activity, because the micelles do not interact electrostatically with probe molecules.  相似文献   

11.
To improve photodynamic activity of the parent hypocrellin B (HB), a tetra-brominated HB derivative (compound 1) was synthesized in high yield. Compared with HB, compound 1 has enhanced red absorption and high molar extinction coefficients. The photodynamic action of compound 1, especially the generation mechanism and efficiencies of active species (Sen·-, O·-2 and 1O2) were studied using electron paramagnetic resonance (EPR) and spectrophotometric methods. In the deoxygenated DMSO solution of compound 1, the semiquinone anion radical of compound 1 is photogenerated via the self-electron transfer between the excited and ground state species. The presence of electron donor significantly promotes the reduction of compound 1. When oxygen is present, superoxide anion radical (O·-2) is formed via the electron transfer from Sens·- to the ground state molecular oxygen. The efficiencies of Sens·- and O·-2 generation by compound 1 are about three and two times as much as that of HB, respectively. Singlet oxygen (1O2) can be produced via the energy transfer from triplet compound 1 to ground state oxygen molecules. The quantum yield of singlet oxygen (1O2) is 0.54 in CHCl3 similar to that of HB. Furthermore, it was found that the accumulation of Sens·- would replace that of O·-2 or 1O2 with the depletion of oxygen in the sealed system.  相似文献   

12.
The Pt2 (II) isomeric terminal hydrides [(CO)(H)Pt(μ-PBu2)2Pt(PBu2H)]CF3SO3 (1a), and [(CO)Pt(μ-PBu2)2Pt(PBu2H)(H)]CF3SO3 (1b), react rapidly with 1 atm of carbon monoxide to give the same mixture of two isomers of the Pt2 (I) dicarbonyl [Pt2(μ-PBu2)(CO)2(PBu2H)2]CF3SO3 (3-Pt); the solid state structure of the isomer bearing the carbonyl ligands pseudo-trans to the bridging phosphide was solved by X-ray diffraction. A remarkable difference was instead found between the reactivity of 1a and 1b towards carbon disulfide or isoprene. In both cases 1b reacts slowly to afford [Pt2(μ-PBu2)(μ,η22-CS2)(PBu2H)2]CF3SO3 (4-Pt), and [Pt2(μ-PBu2)(μ,η22-isoprene) (PBu2H)2]CF3SO3 (6-Pt), respectively. In the same experimental conditions, 1a is totally inert. A common mechanism, proceeding through the preassociation of the incoming ligand followed by the P---H bond formation between one of the bridging P atoms and the hydride ligand, has been suggested for these reactions.  相似文献   

13.
To improve the water solubility and red absorption of the parent hypocrellin B (HB), the complex of HB with aluminum ion has been first synthesized in high yield. The photodynamic action of Al3+-HB, especially the generation mechanism of active species, ([Al3+-HB]·-, O·-2 and 1O2) was studied using electron paramagnetic resonance (EPR) and spectrophotometric methods. In the deoxygenated DMSO solution of Al3+-HB, the semiquinone anion radical of Al3+-HB is photogenerated via the self-electron transfer between the excited and ground state species. The presence of electron donor significantly promotes the reduction of Al3+-HB. When oxygen is present, superoxide anion radical (O·-2) is formed via the electron transfer from [Al3+-HB]·- to the ground state molecular oxygen. Singlet oxygen (1O2) can be produced via the energy transfer from triplet Al3+-HB to ground state oxygen molecules. Furthermore, it is very significant that the accumulation of [Al3+-HB]·- would replace that of O·-2 or 1O2 with the consumption of oxygen in the sealed system.  相似文献   

14.
O2 generation in mitochondrial electron transport systems, especially the NADPH-coenzyme Q10 oxidoreductase system, was examined using a model system, NADPH-coenzyme Q1-NADPH-dependent cytochrome P-450 reductase. One electron reduction of coenzyme Q1 produces coenzyme Q1 and O2 during enzyme-catalyzed reduction and O2 + coenzyme Q1 are in equilibrium with O2 + coenzyme Q1 in the presence of enough O2. The coenzyme Q1 produced can be completely eliminated by superoxide dismutase, identical to bound coenzyme Q10 radical produced in a succinate/fumarate couple-KCN-submitochondrial system in the presence of O2. Superoxide dismutase promotes electron transfer from reduced enzyme to coenzyme Q1 by the rapid dismutation of O2 generated, thereby preventing the reduction of coenzyme Q1 by O2. The enzymatic reduction of coenzyme Q1 to coenzyme Q1H2 via coenzyme Q1 is smoothly achieved under anaerobic conditions. The rate of coenzyme Q1H2 autoxidation is extremely slow, i.e., second-order constant for [O2][coenzyme Q1H2] = 1.5 M−1 · s−1 at 258 μM O2, pH 7.5 and 25°C.  相似文献   

15.
Nitric oxide, a gaseous free radical, is poorly reactive with most biomolecules but highly reactive with other free radicals. Its ability to scavenge peroxyl and other damaging radicals may make it an important antioxidant in vivo, particular in the cardiovascular system, although this ability has been somewhat eclipsed in the literature by a focus on the toxicity of peroxynitrite, generated by reaction of O·-2 with NO· (or of NO- with O2). On balance, experimental and theoretical data support the view that ONOO- can lead to hydroxyl radical (OH·) generation at pH 7.4, but it seems unlikely that OH· contributes much to the cytotoxicity of ONOO-. The cytotoxicity of ONOO- may have been over-emphasized: its formation and rapid reaction with antioxidants may provide a mechanism of using NO· to dispose of excess O·-2, or even of using O·-2 to dispose of excess NO·, in order to maintain the correct balance between these radicals in vivo. Injection or instillation of “bolus” ONOO- into animals has produced tissue injury, however, although more experiments generating ONOO- at steady rates in vivo are required. The presence of 3-nitrotyrosine in tissues is still frequently taken as evidence of ONOO- generation in vivo, but abundant evidence now exists to support the view that it is a biomarker of several “reactive nitrogen species”. Another under-addressed problem is the reliability of assays used to detect and measure 3-nitrotyrosine in tissues and body fluids: immunostaining results vary between laboratories and simple HPLC methods are susceptible to artefacts. Exposure of biological material to low pH (e.g. during acidic hydrolysis to liberate nitrotyrosine from proteins) or to H2O2 might cause artefactual generation of nitrotyrosine from NO-2 in the samples. This may be the origin of some of the very large values for tissue nitrotyrosine levels quoted in the literature. Nitrous acid causes not only tyrosine nitration but also DNA base deamination at low pH: these events are relevant to the human stomach since saliva and many foods are rich in nitrite. Several plant phenolics inhibit nitration and deamination in vitro, an effect that could conceivably contribute to their protective effects against gastric cancer development.  相似文献   

16.
Crocin in aqueous solution is oxidized by ferrylmyoglobin, MbFe(IV)=O, in a second order reaction with k = 183 1 · mol-1 · s-1, AH298 = 55.0 kJ · mol-1, and ΔLS298 = -17 J · mol-1 K-1 (pH = 6.8, ionic strength 0.16 (NaCl), 25°C), as studied by stopped-flow spectroscopy. The reaction has 1:1 stoichiometry to yield metmyoglobin, MbFe(III), and has AGo = -11 kJ · mol-1, as calculated from the literature value E0 = +0.85 V (pH = 7.4) vs. NHE for MbFe(IV)=O/MbFe(III) and from the half-peak potential +0.74 V (vs. NHE in aqueous 0.16 NaCl, pH = 7.4) determined by cyclic voltammetry for the one-electron oxidation product of crocin, for which a cation radical structure is proposed and which has a half-peak potential of +0.89 V for its formation from the two-electron oxidation product of crocin. The fer-rylmyoglobin protein-radical, MbFe(IV)=O, reacts with crocin with 2:l stoichiometq to yield MbFe(IV)= 0, as determined by ESR spectroscopy, in a reaction faster than the second order protein-radical generating reaction between H2O2 and MbFe(III), for which latter reaction k = 137 L · mol-1 · s-1, ΔH298 = 51.5 kJ · mol-1, and ΔH298 = -31 J · mol-1 · K-1 (pH = 6.8, ionic strength = 0.16 (NaCI), 25°C) was determined. Based on the difference between the stoichiometry for the reaction between crocin and each of the two hypervalent forms of myoglobin, it is concluded in agreement with the determined half peak reduction potentials, that the crocin cation radical is less reducing compared to crocin, as the cation radical can reduce the protein radical but not the iron(IV) centre in hypervalent myoglobin.  相似文献   

17.
[NBun4]2[W(C3Se5)3] (C3Se52− = 1,3-diselenole-2-selone-4,5- diselenolate(2−)) was prepared by the reaction of Na2[C3Se5] with WCl6 in ethanol, followed by addition of [NBun4]Br. The cyclic voltammogram in dichloromethane exhibits two oxidation peaks at −0.04 and +0.03 V (versus SCE). The complex reacted with [Fe(C5Me5)2][BF4], iodine or [TTF]3[BF4]2 (TTF·+ = the tetrathiafulvalenium radical cation) in acetonitrile to afford the oxidized complexes [Fe(C5Me5)2]0.5[W(C3Se5)3], [NBun4]0.1[W(C3Se5)3] and [TTF]0.5[W(C3Se5)3], respectively. Current-controlled electrochemical oxidation of the complex in acetonitrile gave [NBun4]0.6[W(C3Se5)3]. The oxidized complexes exhibit electrical conductivities of 4.7×10 −5−1.5×10−3 S cm−1 at room temperature measured for compacted pellets. Electronic absorption, IR and ESR spectra of these complexes are discussed.  相似文献   

18.
Electrochemical studies on metronidazole using mixed aqueous/dimethylformamide (DMF) solvents have allowed us to generate the one-electron addition product, the nitro radical anion, RNO-2. Cyclic volt-ammetric techniques have been employed to study the tendency of RNO-2 to undergo further chemical reaction. The return-to-forward peak current ratio. ip/ipf. was found to increase towards unity with increasing DMF content of the medium, indicating the extended lifetime of RNO-2. Second order kinetics for the decay of RNO-2 were established at all DMF concentrations examined. Extrapolation has allowed the rate constant and a first half-life of 8.4 × 104dm2/mol-sec and 0.059 seconds respectively, to be determined for the decay of RNO-2 in a purely aqueous media. This is impossible by direct electrochemical measurement in water. due to a different reduction mechanism, giving the hydroxylamine derivative in a single 4-electron step. The application of the technique to other nitro-aromatic compounds is discussed.  相似文献   

19.
Oxygen radical scavengers have been shown to prevent the development of ischemic preconditioning, suggesting that reactive oxygen species (ROS) might be involved in this phenomenon. In the present study, we have investigated whether direct exposure to ROS produced by photoactivated Rose Bengal (RB) could mimic the protective effects of ischemic preconditioning.

Methods In vitro generation of ROS from photoactivated RB in a physiological buffer was first characterised by ESR spectroscopy in the presence of 2,2,6,6-tetramethyl-1-piperidone (oxoTEMP) or 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In a second part of the study, isolated rat hearts were exposed for 2.5 min to photoactivated RB. After 5 min washout, hearts underwent 30 min no-flow normothermic ischemia followed by 30 min of reperfusion.

Results and Conclusions The production of singlet oxygen (1O2) by photoactivated RB in the perfusion medium was evidenced by the ESR detection of the nitroxyl radical oxoTEMPO. Histidine completely inhibited oxoTEMPO formation. In addition, the use of DMPO has indicated that (i) superoxide anions (O·-2) are produced directly and (ii) hydroxyl radicals (HO·) are formed indirectly from the successive O·-2 dismutation and the Fenton reaction. In the perfusion experiments, myocardial post-ischemic recovery was dramatically impaired in hearts previously exposed to the ROS produced by RB photoactivation (1O2, O·-2, H2O2 and HO·) as well as when 1O2 was removed by histidine (50 mM) addition. However, functional recovery was significantly improved when hearts were exposed to photoactivated RB in presence of superoxide dismutase (105 IU/L) and catalase (106 IU/L).

Further studies are now required to determine whether the cardioprotective effects of Rose Bengal in presence of O·-2 and H2O2 scavengers are due to singlet oxygen or to other species produced by Rose Bengal degradation.  相似文献   

20.
Experimental evidence is provided that selenomethionine oxide (MetSeO) is more readily reducible than its sulfur analogue, methionine sulfoxide (MetSO). Pulse radiolysis experiments reveal an efficient reaction of MetSeO with one-electron reductants, such as e-aq (k = 1.2 × 1010M-1s-1), CO·-2 (k = 5.9 × 108 M-1s-1) and (CH3)2) C·OH (k = 3.5 × 107M-1s-1), forming an intermediate selenium-nitrogen coupled zwitterionic radical with the positive charge at an intramolecularly formed Se N 2σ/1σ* three-electron bond, which is characterized by an optical absorption with λmax at 375 nm, and a half-life of about 70 μs. The same transient is generated upon HO· radical-induced one-electron oxidation of selenomethionine (MetSe). This radical thus constitutes the redox intermediate between the two oxidation states, MetSeO and MetSe. Time-resolved optical data further indicate sulfur-selenium interactions between the Se N transient and GSH. The Se N transient appears to play a key role in the reduction of selenomethionine oxide by glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号