首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Previous research has shown that fires burn certain land cover types disproportionally to their abundance. We used quantile regression to study land cover proneness to fire as a function of fire size, under the hypothesis that they are inversely related, for all land cover types. Using five years of fire perimeters, we estimated conditional quantile functions for lower (avoidance) and upper (preference) quantiles of fire selectivity for five land cover types - annual crops, evergreen oak woodlands, eucalypt forests, pine forests and shrublands. The slope of significant regression quantiles describes the rate of change in fire selectivity (avoidance or preference) as a function of fire size. We used Monte-Carlo methods to randomly permutate fires in order to obtain a distribution of fire selectivity due to chance. This distribution was used to test the null hypotheses that 1) mean fire selectivity does not differ from that obtained by randomly relocating observed fire perimeters; 2) that land cover proneness to fire does not vary with fire size. Our results show that land cover proneness to fire is higher for shrublands and pine forests than for annual crops and evergreen oak woodlands. As fire size increases, selectivity decreases for all land cover types tested. Moreover, the rate of change in selectivity with fire size is higher for preference than for avoidance. Comparison between observed and randomized data led us to reject both null hypotheses tested ( = 0.05) and to conclude it is very unlikely the observed values of fire selectivity and change in selectivity with fire size are due to chance.  相似文献   

2.
The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes.  相似文献   

3.
Ecosystems driven by wildfire regimes are characterized by fire size distributions resembling power laws. Existing models produce power laws, but their predicted exponents are too high and fail to capture the exponent's variation with geographic region. Here we present a minimal model of fire dynamics that describes fire spread as a stochastic birth-death process, analogous to stochastic population growth or disease spread and incorporating memory effects from previous fires. The model reproduces multiple regional patterns in fire regimes and allows us to classify different regions in terms of their proximity to a critical threshold. Transitions across this critical threshold imply abrupt and pronounced increases in average fire size. The model predicts that large regions in Canada are currently close to this transition and might be driven beyond the threshold in the future. We illustrate this point by analyzing the time series for large fires (>199 ha) from the Canadian Boreal Plains, found to have shifted from a subcritical regime to a critical regime in the recent past. By contrast to its predecessor, the model also suggests that a critical transition, and not self-organized criticality, underlies forest fire dynamics, with implications for other ecological systems exhibiting power-law-like patterns, in particular for their sensitivity to environmental change and control efforts.  相似文献   

4.
Spatiotemporal Variations of Fire Frequency in Central Boreal Forest   总被引:1,自引:0,他引:1  
Determination of the direct causal factors controlling wildfires is key to understanding wildfire–vegetation–climate dynamics in a changing climate and for developing sustainable management strategies for biodiversity conservation and maintenance of long-term forest productivity. In this study, we sought to understand how the fire frequency of a large mixedwood forest in the central boreal shield varies as a result of temporal and spatial factors. We reconstructed the fire history of an 11,600-km2 area located in the northwestern boreal forest of Ontario, using archival data of large fires occurring since 1921 and dendrochronological dating for fires prior to 1921. The fire cycle decreased from 295 years for the period of 1820–1920 to approximately 100 years for the period of 1921–2008. Spatially, fire frequency increased with latitude, attributable to higher human activities that have increased fragmentation and fire suppression in the southern portion of the study area. Fire frequency also increased with distance to waterbodies, and was higher on Podzols that were strongly correlated with moderate drainage and coniferous vegetation. The temporal increase of fire frequency in the central region, unlike western and eastern boreal forests where fire frequency has decreased, may be a result of increased warm and dry conditions associated with climate change in central North America, suggesting that the response of wildfire to global climate change may be regionally individualistic. The significant spatial factors we found in this study are in agreement with other wildfire studies, indicating the commonality of the influences by physiographic features and human activities on regional fire regimes across the boreal forest. Overall, wildfire in the central boreal shield is more frequent than that in the wetter eastern boreal region and less frequent than that in the drier western boreal region, confirming a climatic top-down control on the fire activities of the entire North American boreal forest.  相似文献   

5.
Wildfires in many western North American forests are becoming more frequent, larger, and severe, with changed seasonal patterns. In response, coniferous forest ecosystems will transition toward dominance by fire‐adapted hardwoods, shrubs, meadows, and grasslands, which may benefit some faunal communities, but not others. We describe factors that limit and promote faunal resilience to shifting wildfire regimes for terrestrial and aquatic ecosystems. We highlight the potential value of interspersed nonforest patches to terrestrial wildlife. Similarly, we review watershed thresholds and factors that control the resilience of aquatic ecosystems to wildfire, mediated by thermal changes and chemical, debris, and sediment loadings. We present a 2‐dimensional life history framework to describe temporal and spatial life history traits that species use to resist wildfire effects or to recover after wildfire disturbance at a metapopulation scale. The role of fire refuge is explored for metapopulations of species. In aquatic systems, recovery of assemblages postfire may be faster for smaller fires where unburned tributary basins or instream structures provide refuge from debris and sediment flows. We envision that more‐frequent, lower‐severity fires will favor opportunistic species and that less‐frequent high‐severity fires will favor better competitors. Along the spatial dimension, we hypothesize that fire regimes that are predictable and generate burned patches in close proximity to refuge will favor species that move to refuges and later recolonize, whereas fire regimes that tend to generate less‐severely burned patches may favor species that shelter in place. Looking beyond the trees to forest fauna, we consider mitigation options to enhance resilience and buy time for species facing a no‐analog future.  相似文献   

6.
Analysis of wildfire extinguishment can help to identify the relative contribution of weather and management to the prevention of fire spread. Here we examine the role of weather, previous fire scars and other fuel interruptions at stopping the spread of nine large (mean 90 000 ha) late dry season fires in Arnhem Land, in the tropical savannas of northern Australia. Daily spread was mapped using Moderate‐resolution Imaging Spectroradiometer (MODIS) satellite imagery with a resolution of 250 m. We sampled points along the boundary of the fires and 1 km inside the boundary and compared conditions between the two sets. Using a combination of binomial regression and regression tree analysis, we found that recent burn scars (from the same year) were very effective at stopping fires. Where there was any recent burning within 500 m of a point, there was a 92% likelihood that it was a boundary. Interruptions such as roads, rivers and topography had small but significant effects. Vegetation type and vegetation greenness also had minor effects. Weather had a small effect via wind speed. This minor role of weather was reinforced by the fact that on most days the fires were both spreading and stopping at different parts of their perimeter. In these savannas, the weather in the late dry season is relatively invariant and is probably always conducive to some degree of fire spread. Here, interruptions to the fuel are critical to stopping fires. Nevertheless, for approximately half of boundary cases, the cause of stopping was not clear. This is probably due to the coarse scale of the analysis that does not reflect fine patterns of fuel arrangements.  相似文献   

7.
Large fires and their impacts are a growing concern as changes in climate and land use proceed. The study of large-fire controls remains incipient in comparison with other components of the fire regime. Improved understanding of large-fire size drivers can disclose fire–landscape relationships and inform more sustainable and effective fire management. We used boosted regression tree modeling to identify the variables influent on large-fire size (100–23,219 ha, n = 609) in Portugal (1998–2008) and quantify their relative importance, globally and across the fire-size range. Potential explanatory variables included metrics pertaining to fire weather and antecedent rainfall, burned area composition, fuel connectivity, pyrodiversity (from fire recurrence patterns), topography, and land development. Large fires seldom occurred in the absence of severe fire weather. The fire-size model accounted for 70% of the deviance and included 12 independent variables, of which six absorbed 91% of the explanation. Bottom-up influences on fire size, essentially fuel-related, largely outweighed climate–weather influences, with respective importance of 85 and 15%. Fire size was essentially indifferent to land-cover composition, including forest type, and increased with high fuel connectivity and low pyrodiversity. Relevant synergies between variables were found, either positive or negative, for example, high pyrodiversity buffered the effects of extreme weather on fire size. The relative role of fire-size drivers did not vary substantially with fire size, but fires larger than 500 ha were increasingly controlled by fuel-related variables. The extent of an individual large fire is mainly a function of factors that land-use planning and forest and fuel management can tackle.  相似文献   

8.
North American fire‐adapted forests are experiencing changes in fire frequency and climate. These novel conditions may alter postwildfire responses of fire‐adapted trees that survive fires, a topic that has received little attention. Historical, frequent, low‐intensity wildfire in many fire‐adapted forests is generally thought to have a positive effect on the growth and vigor of trees that survive fires. Whether such positive effects can persist under current and future climate conditions is not known. Here, we evaluate long‐term responses to recurrent 20th‐century fires in ponderosa pine, a fire‐adapted tree species, in unlogged forests in north central Idaho. We also examine short‐term responses to individual 20th‐century fires and evaluate whether these responses have changed over time and whether potential variability relates to climate variables and time since last fire. Growth responses were assessed by comparing tree‐ring measurements from trees in stands burned repeatedly during the 20th century at roughly the historical fire frequency with trees in paired control stands that had not burned for at least 70 years. Contrary to expectations, only one site showed significant increases in long‐term growth responses in burned stands compared with control stands. Short‐term responses showed a trend of increasing negative effects of wildfire (reduced diameter growth in the burned stand compared with the control stand) in recent years that had drier winters and springs. There was no effect of time since the previous fire on growth responses to fire. The possible relationships of novel climate conditions with negative tree growth responses in trees that survive fire are discussed. A trend of negative growth responses to wildfire in old‐growth forests could have important ramifications for forest productivity and carbon balance under future climate scenarios.  相似文献   

9.
An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes.  相似文献   

10.
Prior work shows western US forest wildfire activity increased abruptly in the mid-1980s. Large forest wildfires and areas burned in them have continued to increase over recent decades, with most of the increase in lightning-ignited fires. Northern US Rockies forests dominated early increases in wildfire activity, and still contributed 50% of the increase in large fires over the last decade. However, the percentage growth in wildfire activity in Pacific northwestern and southwestern US forests has rapidly increased over the last two decades. Wildfire numbers and burned area are also increasing in non-forest vegetation types. Wildfire activity appears strongly associated with warming and earlier spring snowmelt. Analysis of the drivers of forest wildfire sensitivity to changes in the timing of spring demonstrates that forests at elevations where the historical mean snow-free season ranged between two and four months, with relatively high cumulative warm-season actual evapotranspiration, have been most affected. Increases in large wildfires associated with earlier spring snowmelt scale exponentially with changes in moisture deficit, and moisture deficit changes can explain most of the spatial variability in forest wildfire regime response to the timing of spring.This article is part of the themed issue ‘The interaction of fire and mankind’.  相似文献   

11.
Forests in the Mediterranean basin frequently experience fires due to both anthropogenic and natural causes. There are concerns that the fire season will prolong in the Mediterranean basin, the fire frequency will increase with ongoing climate change, moreover, the fire regimes will shift from surface fires to local crown fires. Here, we aim to improve our understanding of the fire regime components of black pine forests in Turkey by 1) reconstructing a high-resolution fire chronology based on tree rings, 2) revealing the seasonality of fires, 3) investigating the relationship between fire and climate, and 4) comparing our reconstruction results with documentary data from forest management units. We collected 62 fire-scarred trees from three sites in Kütahya and developed a 368 year-long (1652–2019) composite fire chronology using dendrochronological methods. We found that at two sites major fire years coincided with dry years. Two major fire years (1853 and 1879) were common to all sites and two additional fire years (1822 and 1894) were found at two sites. Our results show a sharp decline in fire frequency after the beginning of the 20th century at all sites that can be attributed to increased fire suppression efforts and forest management activities in the 20th century. Our results suggest that the spread of fires has been actively suppressed since the first forest protection law in Turkey. Yet, tree-ring based and documentary data corroboration shows that seasonality did not change over the past +350 years.  相似文献   

12.
Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentata Nutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: ?6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: ?47.9%, ?41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.  相似文献   

13.
Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.  相似文献   

14.
Multiple scale‐dependent ecological processes influence species distributions. Uncovering these drivers of dynamic range boundaries can provide fundamental ecological insights and vital knowledge for species management. We develop a transferable methodology that uses widely available data and tools to determine critical scales in range expansion and to infer dominating scale‐dependent forces that influence spread. We divide a focal geographic region into different sized square cells, representing different spatial scales. We then used herbarium records to determine the species' occupancy of cells at each spatial scale. We calculated the growth in cell occupancy across scales to infer the scale dependent expansion rate. This is the first time such a ‘box‐counting’ method is used to study range expansion. We coupled this multi‐scale analysis with species distribution models to determine the range and spatial scales where suitable climate allows the species to spread, and where other factors may be influencing the expansion. We demonstrate our methodology by assessing the spread of invasive Sahara mustard in North America. We detect critical scales where its spread is limited (100–500 km) or unconstrained (5–50 km) by climatic variables. Using climate‐based models to assess the similarity of climate envelopes in its native and invaded range, we find that the climate in the invaded range generally predicts the native distribution, suggesting that either there has been little local adaptation to climate occurring since introduction or the biological interaction experienced in the invaded range has not driven the species to occupy climatic conditions much different from its native range. Our novel method can be broadly utilized in other studies to generate critical insights into the scale dependency of different ecological drivers that influence the spread and distribution limits, as well as to help parameterizing predictions of future spread, and thus inform management decisions.  相似文献   

15.
Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire regimes and tested whether relationships vary across space and time. Patterns of high-severity fire demonstrate consistent scaling behaviour; as fire size increases, high-severity patches consistently increase in size and homogeneity. Scaling relationships did not differ substantially across space or time at the scales considered here, suggesting that as fire-size distributions potentially shift, stationarity in patch-size scaling can be used to infer future patterns of burn severity.  相似文献   

16.
Although it has long been assumed that wildfire occurrence is independent of stand age in the North American boreal forest, recent studies indicate that young forests may influence burn rates by limiting the ignition and spread of fires for several years. Wildfires not only structure the stand-age mosaic of boreal landscapes, but also alter the likelihood and behavior of subsequent fires. Using a fire simulation model, we evaluated the effect of stand age on the magnitude and spatial patterns of burn probability (BP) in the boreal forest of northeastern Canada. Specifically, we assessed the stand age effect on the two processes driving fire likelihood, ignition and spread, by simulating tens of thousands of fires under three fire regime scenarios that vary in terms of mean fire size and number of burned patches. Assuming minimal resistance to fire ignition and spread, where only the youngest stands (≤ 10 years) are resistant to burning, mean BP is reduced by 10%; in contrast, assuming maximum resistance, where stands up to 90 years old impede wildfires, mean BP can be reduced up to 85%. Although the resistance to ignition on BP is almost identical in magnitude to that of spread, it yields substantially different spatial arrangements of BP. Furthermore, stand age resistance reduces subsequent fire activity not only within but also outside the perimeter of burned patches through a shadow effect. Our results help to untangle the role of factors contributing to stand age resistance on wildfires and offer new insights for improving the spatial mapping of fire likelihood.  相似文献   

17.
Vegetation processes in terrestrial ecosystems are closely linked with wildfire regime, but fire histories at the boundary between the Great Basin and Mojave Deserts of North America are relatively sparse. We investigated wildfire regime and its driving factors before and after Euro-American settlement in high-elevation mixed-conifer ecosystems that are found as “mountain islands” in south-eastern Nevada, USA. Field-based results obtained at the Clover Mountains were compared with those already published for Mt. Irish, less than 100 km away, and also to remotely sensed information provided by the LANDFIRE project, which is commonly used for natural resource management. Annually resolved wildfire history at the Clover Mountains was derived back to year 1500 from fire scar samples taken from 139 ponderosa pines (Pinus ponderosa) located in six stands. During the 1785–2007 period, when at least 20 recorder trees (and a total of 241 fire scars) were available, the Clover Mountains were characterized by frequent (mean fire interval <10 years) low-severity fires, half of which scarred more than 10 % of recorder trees. The 1877 and 1946 fires scarred 50 % or more of recorder trees and spread to four out of six sampled stands. After the 1946 event, the site has experienced a 61-year fire-free period tied to fire suppression activity starting in the mid-1900s. In comparison with Mt. Irish, the Clover Mountains showed a longer mean fire return interval, larger fires, and some patchy high-severity events, even before Euro-American settlement. Variations in ecosystem composition and associated fire regime in these high-elevation mixed-conifer woodlands were not adequately captured by remotely sensed data used for vegetation management, revealing a need for additional field-based assessments of fire regime characteristics in this region.  相似文献   

18.
Community resilience offers a conceptual framework for assessing a community's capacity for coping with environmental changes and emergency situations. It is perceived as a core element of sustainable lifestyle, helping to mitigate the community's reaction to crises by facilitating purposeful and collective action on the part of its’ members. The conjoint community resilience assessment measure (CCRAM) provides a standard measure of community resilience including five factors: leadership, collective efficacy, preparedness, place attachment, and social trust. The mean scores of each the factors portray a community resilience profile and the overall CCRAM score is calculated as the average of the scores of the 21 survey items with an equal weight.Two regression models were employed. Logistic regression, a commonly used tool in the field of applied statistics, and quantile regression, which is a non-parametric method that facilitates the detection of the effect of a regressor on various quantiles of the dependent variable.The study aims to demonstrate the innovative use of quantile regression modeling in community resilience analysis.The results demonstrate that the quantile regression was significantly more sensitive to sub-populations than the logistic regression.Having an income below average, which was negatively correlated with perceived community resilience in the logistic model was found to be significant only in the lower (Q10, Q25) resilience quantiles. Age (per year) and previous involvement in emergency situations which were not noted as significant in the logistic regression, were found to be positively associated with perceived community resilience in the lowest quantile. A difference between quantiles of perceived community resilience was noted in regard to size of community. The association between size of community and perceived community resilience which was negative in the logistic regression (residents of larger towns had lower community resilience), was found to be such only up to quantile 75, but it reversed in the highest quantile.It was concluded that the utilization of quantile regression analysis in studies of community resilience can facilitate the creation of tailored response plans, adapted to the needs of sub (such as weaker) populations and help enhance overall community resilience in crises.  相似文献   

19.
Projecting future fire activity in Amazonia   总被引:1,自引:0,他引:1  
Fires are major disturbances for ecosystems in Amazonia. They affect vegetation succession, alter nutrients and carbon cycling, and modify the composition of the atmosphere. Fires in this region are strongly related to land‐use, land‐cover and climate conditions. Because these factors are all expected to change in the future, it is reasonable to expect that fire activity will also change. Models are needed to quantitatively estimate the magnitude of these potential changes. Here we present a new fire model developed by relating satellite information on fires to corresponding statistics on climate, land‐use and land‐cover. The model is first shown to reproduce the main contemporary large‐scale features of fire patterns in Amazonia. To estimate potential changes in fire activity in the future, we then applied the model to two alternative scenarios of development of the region. We find that in both scenarios, substantial changes in the frequency and spatial patterns of fires are expected unless steps are taken to mitigate fire activity.  相似文献   

20.
Processes derived from global change such as land-use changes, climate warming or modifications in the perturbation regime may have opposite effects on forest extent and structure with still unknown consequences on forest biodiversity at large spatial scales. In the present study, we aimed at determining forest dynamics associated with global change processes (forest spread, maturation and fire) that have driven the variation in forest bird distributions in Mediterranean forest ecosystems in recent years. The study was located in Catalonia (NE Spain) and used changes in richness of specialist and generalist forest bird species in the last 20 years of the 20th century as indicators of forest biodiversity change. Forest bird distribution changes showed strong spatial patterns and appeared to be related to population processes occurring beyond sampling units (10 km × 10 km squares). Forest maturation appeared as the most important driver of such changes because most of the studied species have a non-Mediterranean origin and are associated with more mature forests. To a lower degree, forest spread also contributed to forest bird distribution changes whereas the impact of forest fires was not associated to a decrease in the richness of either group of forest species. Given the relatively coarse scale at which our study was conducted, caution should be taken when extrapolating our results to the possible future impacts of climate change on fire regime and forest bird distribution. Our results indicate that large-scale forest maturation and spread due mainly to land abandonment in Catalonia has overridden the potentially negative effects of fires on forest bird distributions and are currently driving changes in forest biodiversity patterns across the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号