首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proportions of calcium (Ca2+) channel subtypes in chick or rat P2 fraction and NG 108-15 cells were investigated using selective L-, N-, P- and P/Q- type Ca2+ channel blockers. KCl-stimulated 45Ca2+ uptake by chick P2 fraction was blocked by 40~50% using N-type Ca2+ channel blockers [-conotoxin GVIA, aminoglycoside antibiotics and dynorphin A(1–13)], but was not inhibited by P- or P/Q-type blockers (-agatoxin IVA or -conotoxin MVIIC). On the other hand, KCl-stimulated 45Ca2+ uptake by rat P2 fraction was blocked by 30~40% using P- or P/Q-type Ca2+ channel blockers, but was not inhibited by N-type Ca2+ channel blockers. The L-type Ca2+ channel blockers 1,4-dihydropyridines, diltiazem and verapamil, but not calciseptine (CaS), inhibited both KCl-stimulated 45Ca2+ uptake and veratridine-induced 22Na+ uptake by chick or rat P2 fraction with similar IC50 values. CaS did not have any effect on 45Ca2+ uptake by either chick or rat P2 fraction. In NG108-15 cells, CaS, -agatoxin IVA and -conotoxin MVIIC, but not -conotoxin GVIA, inhibited KCl-stimulated 45Ca2+ uptake by 30–40%. Various combinations of these Ca2+ channel blockers had no significant additional effects in chick or rat P2 fraction or NG 108-15 cells. These findings suggest that KCl-stimulated 45Ca2+ uptake by chick or rat P2 fraction and NG 108-15 cells is a convenient and useful model for screening whether or not natural or synthetic substances have selective effects as L-, N-, P-, or P/Q- type Ca2+ channel antagonists or agonists.  相似文献   

2.
Summary In this study, the toxic effect of sanguinarine (SANG) on heart was studied with isolated cardiac muscle strip isolated from Wistar rat. SANG induced positive inotropic action followed by contracture on the left ventricle and both atria strips. In addition, SANG dose-dependently inhibited spontaneous beat of the right atrium. SANG-induced contracture was completely suppressed by pretreatment with La3+ or in a Ca2+ free Tyrode solution containing 2.5 mM EGTA. Incubating isolated cardiomyocytes with SANG enhanced the 45Ca2+ influx, which could be inhibited by pretreatment with La3+. However, the SANG-induced 45Ca2+ influx could not be inhibited by pretreatment with other Ca2+ channel blockers, such as nifedipine, verapamil, diltiazem, nickel and manganese, and amiloride. Although antioxidants can inhibit the SANG-induced lipid peroxidation, they could not prevent the SANG-induced contracture. N-acetylcysteine and dithiothreitol, the sulfhydryl reducing agents, were shown to be effective in preventing the SANG-induced contracture. These data suggested that the SANG-induced contracture is caused by the influx of extracellular Ca2+ through a La3+-sensitive Ca2+ channel.  相似文献   

3.
4.
(Na++K+)-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na+/Ca2+-exchanger (NCX) plays a critical role in increasing intracellular Ca2+ concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on 45Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced 45Ca influx, suggesting that the Ca2+ influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca2+ channel (LTCC) inhibitor, completely blocks the activation of NKA-induced 45Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca2+. In contrast, the inhibition of NKA by ouabain induces 4.7-fold 45Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced 45Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca2+ and that the NCX reverse-mode is the major source for the 45Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca2+ increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca2+ influx path ways in cardiomyocytes.  相似文献   

5.
Folate-activated one-carbon units are derived from serine through the activity of the pyridoxal-phosphate (PLP)-dependent isozymes of serine hydroxymethyltransferase (SHMT). The effect of vitamin B(6) availability on the activity and expression of the human mitochondrial and cytoplasmic SHMT isozymes was investigated in human MCF-7 cells. Cells were cultured for 6 months in vitamin B(6) replete (4.9 microM pyridoxine) minimal essential medium (alphaMEM) or vitamin B(6)-deficient medium containing 49, 4.9 or 0.49 nM pyridoxine. Total cellular PLP levels and SHMT activity were reduced 72% and 7%, respectively, when medium pyridoxine was decreased from 4.9 microM to 49 nM. Cells cultured in medium containing 4.9 nM pyridoxine exhibited 75%, 27% and 60% reduced levels of PLP, SHMT activity and S-adenosylmethionine, respectively, compared to cells cultured in alphaMEM. Cytoplasmic SHMT activity and protein levels, but not mRNA levels, were decreased in cells cultured in vitamin B(6) deficient medium, whereas mitochondrial SHMT activity and protein levels were less sensitive to vitamin B(6) availability. PLP bound to cytoplasmic SHMT with a K(d)=850 nM, a value two orders of magnitude lower than previously reported for the bovine cytoplasmic SHMT isozyme. Collectively, these data indicate that vitamin B(6) restriction decreases the activity and stability of SHMT, and that the cytoplasmic isozyme is more sensitive to vitamin B(6) deficiency than the mitochondrial isozyme in MCF-7 cells.  相似文献   

6.
Hippocampal slices have been widely used to investigate electrophysiological and metabolic neuronal parameters, as well as parameters of astroglial activity including protein phosphorylation and glutamate uptake. S100B is an astroglial-derived protein, which extracellularly plays a neurotrophic activity during development and excitotoxic insult. Herein, we characterized S100B secretion in acute hippocampal slices exposed to different concentrations of K+ and Ca2+ in the extracellular medium. Absence of Ca2+ and/or low K+ (0.2 mM KCl) caused an increase in S100B secretion, possibly by mobilization of internal stores of Ca2+. In contrast, high K+ (30 mM KCl) or calcium channel blockers caused a decrease in S100B secretion. This study suggests that exposure of acute hippocampal slices to low- and high-K+ could be used as an assay to evaluate astrocyte activity by S100B secretion: positively regulated by low K+ (possibly involving mobilization of internal stores of Ca2+) and negatively regulated by high-K+ (likely secondary to influx of K+).  相似文献   

7.
Summary Stimulations or inhibitions by various agents of45Ca efflux from prelabeled cells or tissues display distinct and reproducible profile patterns when the results are plotted against time as fractional efflux ratios (FER). FER is the fractional efflux of45Ca from stimulated cells divided by the fractional efflux from a control unstimulated group. These profile patterns fall into three categories: peak patterns, exponential patterns, and mixed patterns. Each category can be positive (stimulation) or negative (inhibition). The interpretation of these profiles is difficult because45Ca efflux depends on three variables: the rate of calcium transport out of the cell, the specific activity of the cell compartment from which the calcium originates, and the concentration of free calcium in this compartment. A computer model based on data obtained by kinetic analyses of45Ca desaturation curves and consisting of two distinct intracellular pools was designed to follow the concentration of the traced substance (40Ca), the tracer (45Ca), and the specific activity of each compartment before, during, and after the stimulation or the inhibition of calcium fluxes at various pool boundaries. The computer model can reproduce all the FER profiles obtained experimentally and bring information which may be helpful to the interpretation of this type of data. Some predictions of the model were tested experimentally, and the results support the views that a peak pattern may reflect a sustained change in calcium transport across the plasma membrane, that an exponential pattern arises from calcium mobilization from an internal subcellular pool, and that a mixed pattern may be caused by a simultaneous change in calcium fluxes at both compartment boundaries.  相似文献   

8.
The discovery of a diverse and unique subset of ion channels in T lymphocytes has led to a rapidly growing body of knowledge about their functional roles in the immune system. Potent and specific blockers have provided molecules tools to probe channel structure—function relations and to elucidate the involvement of K+, Ca2+, and Cl channels in T-cell activation and cell volume regulation. Recent advances in analyzing Kv1.3 channel structure—function relationships have defined binding sites for channel blockers, which have now been shown to be effective in suppressing T-cell function in vivo. Ion channels may provide excellent pharmaceutical targets for modulating immune system function.  相似文献   

9.
1. We have previously reported that atrial natriuretic factor (ANF) decreases neuronal norepinephrine (NE) release. The mechanism that mediates NE release from presynaptic membrane to synaptic cleft is a strongly calcium-dependent process. The modulator effect of ANF may be related to modifications in calcium influx at the presynaptic nerve ending by interaction with voltage-operated calcium channels (VOCCs).2. On this basis we investigated the effects of ANF on K+-induced 45Ca2+ uptake and evoked neuronal NE release in the presence of specific L-, N-, and P/Q-type calcium channel blockers in the rat hypothalamus.3. Results showed that ANF inhibited K+-induced 45Ca2+ uptake in a concentration-dependent fashion. Concentration–response curves to VOCC blockers nifedipine (NFD, L-type channel blocker), -conotoxin GVIA (CTX, N-type channel blocker), and -agatoxin IVA (AGA, P/Q-type channel blocker) showed that all the blockers decreased NE release. Incubation of ANF plus NFD showed an additive effect as compared to NFD or ANF alone. However, when the hypothalamic tissue was incubated in the presence of ANF plus CTX or AGA there were no differences in neuronal NE release as compared to calcium channel blockers or ANF alone.4. These results suggest that ANF decreases NE release by an L-type calcium channel independent mechanism by inhibiting N- and/or P/Q-type calcium channels at the neuronal presynaptic level. Thus, ANF modulates neuronal NE release through different mechanisms involving presynaptic calcium channel inhibition.  相似文献   

10.
Vicia faba plants were grown under drought conditions and variously supplemented with calcium. Drought stress markedly inhibited the growth of Vicia faba plants. Ca2+ ameliorated to a large extent this inhibition; fresh weight, dry mass, chlorophyll and water contents were variably improved. Membranes were, also, negatively affected by drought stress and percentage leakage was elevated. Concomitantly, the efflux of K+ and Ca2+ was enhanced by drought but lowered by supplemental Ca2+. In addition, membranes of droughted plants were sensitive to the Ca2+ channel blockers lanthanum, nifedipine or verapamil more than those of control plants. These blockers significantly increased the efflux of K+ and Ca2+ as well as percentage leakage particularly in those of droughted plants. The above results indicated that the functioning of the calcium channels was negatively affected when Vicia faba was grown under drought conditions. However, much of the drought-induced disorders including sensitivity towards the applied calcium channel blockers could be ameliorated by supplemental Ca2+.  相似文献   

11.
In the central nervous system, fibroblast growth factor 2 (FGF2) is known to have important functions in cell survival and differentiation. In addition to its roles as a neurotrophic factor, we found that FGF2 caused cell death in the early primary culture of cortical neurons. FGF2-induced neuronal cell death showed apoptotic characters, e.g., chromatin condensation and DNA fragmentation. The ultrastructural morphology of FGF2-treated neurons indicated apoptotic features such as progressive cell shrinkage, blebbing of the plasma membrane, loss of cytosolic organelles, clumping of chromatin, and fragmentation of DNA. Tyrosine kinase inhibitors significantly rescued neurons from FGF2-induced apoptosis. FGF2 potentiated a marked influx of Ca2+ into neurons before apoptosis. Both a calcium chelator and L-type voltage-sensitive Ca2+ channel (L-VSCC) blockers attenuated FGF2-induced apoptosis, whereas other blockers of VSCCs such as N-type and P/Q-types did not. Blockers of L-VSCCs significantly suppressed FGF2-enhanced Ca2+ influx into neurons. Moreover, FGF2 also generated reactive oxygen species (ROS) before apoptosis. Radical scavengers reduced not only the FGF2-generated ROS, but also the FGF2-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that FGF2 caused apoptosis via L-VSCCs in the early neuronal culture.  相似文献   

12.
Depolarization-evoked increases in intraterminal free Ca2+ are required for the induction of neurotransmitter release from nerve terminals. Although the mechanisms that regulate the voltage-induced accumulation of presynaptic Ca2+ remain obscure, there is evidence that the phospholipase-dependent accumulation of arachidonic acid, or its metabolites, may be involved. Therefore, fura-2 loaded hippocampal mossy fiber nerve endings were used to investigate the relationships between membrane depolarization, lipid metabolism and presynaptic Ca2+ availability. It was observed that depolarization of the nerve terminals with KCl induced an increase in intraterminal free calcium that was inhibited more than 90% by a combination of voltage-sensitive Ca2+ channel blockers. In addition, the K+-dependent effects on Ca2+ concentrations were attenuated in the presence of phospholipase A2 inhibitors, but were mimicked by the phospholipase A2 activator melittin and exogenous arachidonic acid. Both the melittin- and arachidonic acid-induced increases in presynaptic Ca2+ were reduced by voltage-sensitive Ca2+ channel blockers. The stimulatory effects of arachidonic acid appeared to be independent of its further metabolism to prostaglandins. In fact, inhibition of either cyclooxygenase or lipoxygenase pathways resulted in a potentiation of the depolarization-evoked increase in intraterminal free Ca2+. From these results, we propose that some portion of the depolarization-evoked increase in intraterminal free calcium depends on the activation of phospholipase A2 and the subsequent accumulation of unesterified arachidonic acid.  相似文献   

13.
The interaction between ammonium and potassium during influx was examined in roots of dark-grown decapitated corn seedlings (Zea mays L., cv. Pioneer 3369A). Influx was measured during a 10-min exposure to either (15NH4)2SO4 ranging from 10 to 200 M NH 4 + with and without 200 M K(86Rb)Cl or to K(86Rb)Cl ranging from 10 to 200 M K+ with and without 200 M NH 4 + as (15NH4)2SO4. The simple Michaelis-Menten model described the data well only for potassium influx in the presence of ambient ammonium. For the other three instances, the data were improved by assuming that a second influx mechanism became operative as the low-concentration phase approached saturation. Two distinct mechanisms are thus indicated for both ammonium and potassium influx within the range of 10 to 200 M.The influx mechanism operating at low concentrations showed greater affinity for potassium than for ammonium, even though the capacity for ammonium transport was twice as large as that for potassium. It is suggested that this phase involved a common transport system for the two ions and that localized low acidity next to the internal surface, following H+ extrusion, favored ammonium deprotonation and dissociation from the transport system-ammonium complex. Parallel decreases in V max and increases in Km of the low-concentration saturable phase occurred for ammonium influx when ambient potassium was present and for potassium influx when ambient ammonium was present. The data support a mixed-type inhibition in each case. Simultaneous measurement of potassium and ammonium influx showed that they were highly negatively correlated at the lower concentrations, indicating that the extent to which influx of the inhibited ion was restricted was associated with influx of the inhibitor ion. Presence of ambient ammonium eliminated the second phase of potassium influx. In contrast, the presence of ambient potassium decreased the concentration at which the second phase of ammonium influx was initiated but did not restrict the rate.Paper no. 11131 of the Journal Series of the North Carolina Agricultural Research ServiceThe use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned  相似文献   

14.
Normal growth of the fetal lung is dependent upon fetal breathing movements. We have previously demonsrated that mechanical strain, simulating fetal breathing movements, stimulated DNA synthesis and cell division by reaggregated alveolar-like structures of fetal rat lung cells. Herein, we report that both intracellular and extracellular calcium modulate strain-induced proliferative activity. Strain-induced cell proliferation was inhibited by BAPTA/AM, an intracellular calcium chelator. The intracellular calcium modulators, cyclopiazonic acid and 2,5-di-(tert-butyl)-1, 4-benzohydroquinone, increased DNA synthesis of unstrained cultures and partially reduced strain-induced cell growth activity. A similar effect was noted with the calcium ionophore A23187. Extracellular Ca2+ increased DNA synthesis in unstrained cultures in a concentration-dependent fashion. The stimulatory effect of strain on DNA synthesis was also dependent on the calcium concentration in the medium. Furthermore, strain-enhanced DNA synthesis was inhibited by the presence of a divalent ion chelator, EGTA, in the medium. Mechanical strain increased 45Ca2+ influx within 1 min after the onset strain. This rapid entry of calcium was not affected by calcium channel blockers, such as verapamil or Ni2+. Calcium channel blockers verapamil, nifedipine, Ni2+, Co2+, or La3+ also did not inhibit strain-induced cell growth activity. In contrast, gadolinium, a stretch-activated channel blocker, inhibited strain-induced 45Ca2+ influx and suppressed strain-enhanced DNA synthesis. We conclude that the entry of calcium into cells through stretch-activated ion channels plays a critical role in strain-induced fetal lung cell proliferation. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Huang S  Zeng H  Zhang J  Wei S  Huang L 《Phytochemistry》2011,72(17):2124-2129
There are six different vitamin B6 (VB6) forms, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5′-phosphate (PLP), pyridoxamine 5′-phosphate (PMP), and pyridoxine 5′-phosphate (PNP), of which PLP is the active form. Although plants are a major source of VB6 in the human diet, and VB6 plays an important role in plants, the mechanisms underlying the interconversions of different VB6 forms are not well understood. In this study, in vitro tobacco plants were grown on Murashige and Skoog (MS) basal media supplemented with 100 mg/L of PM, PL or PN and the abundance of the different B6 vitamers in leaf tissue was quantified by high performance liquid chromatography (HPLC). The total amount of VB6 was about 3.9 μg/g fresh weight of which PL, PM, PN, PLP and PMP accounted for 23%, 14%, 37%, 20% and 6%, respectively. Tobacco plants contained a trace amount of PNP. Supplementation of the culture medium with any of the non-phosphorylated vitamers resulted in an increase in total VB6 by about 10-fold, but had very little impact on the concentrations of the endogenous phosphorylated vitamers. Administration of either PM or PN increased their endogenous levels more than the levels of any other endogenous B6 vitamers. PL supplementation increased the levels of plant PN and PM significantly, but not that of PL, suggesting that efficient conversion pathways from PL to PN and PM are present in tobacco. Additionally, maintenance of a stable level of PLP in the plant is not well-correlated to changes in levels of non-phosphorylated forms.  相似文献   

16.
Mouse striatum was incubated with [3H]dopamine ([3H]DA) and superfused with and the tritium efflux induced by nicotine, electrical stimulation, or simultaneous nicotine and electrical stimulation was measured, to characterize the role of different Ca2+ channels in the transmitter release. Nicotine stimulation and electrical stimulation exerted additive effects on tritium efflux. Separation of the released radioactivity on alumina columns indicated that nicotine or electrical stimulation increases the release of [3H]DA and that the outflow of3H-labeled metabolites was similar with the two different stimulation procedures. Removal of Ca2+ from the superfusate resulted in a marked reduction in the tritium release evoked by nicotine, whereas the electrical stimulation-evoked tritium release was completely dependent on external Ca2+. The L-and N-type calcium channel blockers omega-conotoxin GVIA and Cd2+ inhibited the tritium release from the striatum evoked by either nicotine or electrical stimulation, whereas the L-type and T-type channel blockers diltiazem and Ni2+ did not alter release of [3H]DA. We conclude that N-type voltage-sensitive Ca2+ channels participate in striatal dopamine release, and we speculate that nicotinic receptor-operated ion channels permeable to cations such as Ca2+ and N-type voltage-sensitive calcium channels may simultaneously open up, and they additively increase free intracellular Ca2+ concentration.  相似文献   

17.
Secretion of bicarbonate has been described for distal nephron epithelium and attributed to apical Cl/HCO 3 exchange in beta-intercalated cells. We investigated the presence of this mechanism in cortical distal tubules by perfusing these segments with acid (pH 6) 10 mm phosphate Ringer. The kinetics of luminal alkalinization was studied in stationary microperfusion experiments by double-barreled pH (ion-exchange resin)/1 m KCl reference microelectrodes. Luminal alkalinization may be due to influx (into the lumen) of HCO 3 or OH, or efflux of H+. The magnitude of the Cl/ HCO 3 exchange component was measured by perfusing the lumen with solutions with or without chloride, which was substituted by gluconate. This component was not different from zero in control and alkalotic (chronic plus acute) Wistar rats. Homozygous Brattleboro rats (BRB), genetically devoid of antidiuretic hormone, were used since this hormone has been shown to stimulate H+ secretion, which could mask bicarbonate secretion. In these rats, no evidence for Cl/HCO 3 exchange was found in control BRB and in early distal segments of alkalotic animals, but in late distal tubule a significant component of 0.14±0.033 nmol/cm2 · sec was observed, which, however, is small when compared to the reabsorptive flow found in control Wistar rats, of 0.95±0.10 nmol/cm2 · sec. In addition, 5×10–4 m SITS had no effect on distal bicarbonate reabsorption in controls as well as on secretion in alkalotic Wistar and Brattleboro rats, which is compatible with the absence of effect of this drug on the apical Cl/HCO 3 exchange in other tissues. It is concluded that most distal alkalinization is not Cl dependent, and that Cl/HCO 3 exchange may be found in cortical distal tubule, but its magnitude is, even in alkalosis, markedly smaller than the reabsorptive flux, which predominates in the rats studied in this paper, keeping luminal pH lower than that of blood.  相似文献   

18.
The involvement of Ca2+ ATPases in anthocyanin accumulation in callus cultures of Daucus carota was investigated under the influence of calcium and calcium channel modulators. Ionophore (I) treatment enhanced callus growth and anthocyanin accumulation. Increasing the amount of calcium applied to cultures enhanced the anthocyanin level. Ionophore treatment influenced the enhancement of Ca2+ATPase and endogenous titres of PAs. Addition of the calcium channel blocker verapamil or the calmodulin antagonist chlorpromazine to the A23187 (ionophore) treated cells caused a reduction in anthocyanin levels. Channel blockers reduced Ca2+ATPase activity, which was restored by ionophore treatment, showing the importance of calcium in anthocyanin production. Higher ethylene levels were also found in treatment with ionophore or 2X calcium. Thus the influence of ionophore in anthocyanin production and its inhibition by calcium channel modulators suggests that calcium plays an important role in the production of anthocyanin by carrot callus cultures.  相似文献   

19.
There is strong evidence that excess dietary salt (NaCl) is a major factor contributing to the development of hypertension. Salt sensitive humans and rats develop hypertension even on a normal salt diet. Salt sensitivity is associated with glucose intolerance and insulin resistance in both humans and animal models, including Dahl salt sensitive (DSS) rats. In insulin resistance, impaired glucose metabolism leads to elevated endogenous aldehydes. These aldehydes bind sulfhydryl groups of membrane proteins, altering calcium channels, increasing cytosolic free calcium ([Ca2+]i) and blood pressure. Treatment with lipoic acid, an endogenous sulfur-containing fatty acid, normalizes insulin resistance and lowers tissue aldehyde conjugates, cytosolic [Ca2+]i, and blood pressure in spontaneously hypertensive rats (SHR). The objective of this study was to investigate the effects of a normal salt diet on tissue aldehyde conjugates, cytosolic [Ca2+]i and blood pressure in DSS rats and to determine whether lipoic acid supplementation prevents the increase in blood pressure and biochemical changes. Starting at 7 weeks of age, DSS rats were divided into three groups of six animals each and treated for 6 weeks with diets as follows: DSS-low salt, 0.4% NaCl; DSS-normal salt, 0.7% NaCl, and; DSS-normal salt + lipoic acid, 0.7% NaCl + lipoic acid 500 mg/kg feed. At completion, animals in the normal salt group had elevated systolic blood pressure, cytosolic [Ca2+]i and tissue aldehyde conjugates as compared to the low salt group. They also showed smooth muscle cell hyperplasia in small arteries and arterioles of the kidney. Dietary lipoic acid supplementation attenuated the increase in systolic blood pressure and associated biochemical and histopathological changes.  相似文献   

20.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号