首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
2.
HER-2/neu oncoprotein overexpression was compared in fresh frozen and paraffin-embedded formalin-fixed invasive breast cancer material from the same patients. The HER-2/neu protein was detected by an immunohistochemical staining method, and the average amount of protein staining per cell was measured using the CAS-200 image analysis system and expressed relative to the amount of HER-2/neu protein of calibration cells of the SKBR3 cell line which are known to have amplification of the HER-2/neu gene and overexpression of the HER-2/neu protein. There was a significant correlation between degree of HER-2/neu protein overexpression and DNA-hyperdiploidy (P less than 0.01, chi 2 test). No significant correlation could be demonstrated between degree of HER-2/neu overexpression and tumor size, lymph node status, number of positive nodes or morphometric features. There was in general a good concordance (r = 0.83) in HER-2/neu expression values between fresh and paraffin-embedded material. Pairwise comparison of the two series (Wilcoxon signed ranks test) revealed no significant differences, indicating that there were no systematic differences between HER-2/neu assessments in fresh and paraffin material. When analysing the HER-2/neu expression values according to thresholds used earlier for overexpression, comparable results for fresh and paraffin material were obtained for most cases. In the fresh and paraffin material a different staining pattern was observed (more membrane staining in the fresh material in contrast to a more diffuse staining pattern in the paraffin material). It was concluded that both fresh-frozen and paraffin-embedded, formalin-fixed material is suitable for assessment of HER-2/neu protein overexpression by image analysis and provides comparable HER-2/neu expression values in most cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Amplification and resulting overexpression of the HER-2/ neu proto-oncogene is found in approximately 30% of human breast and 20% of human ovarian cancers. To better understand the molecular events associated with overexpression of this gene in human breast cancer cells, differential hybridization was used to identify genes whose expression levels are altered in cells overexpressing this receptor. Of 16 000 clones screened from an overexpression cell cDNA library, a total of 19 non-redundant clones were isolated including seven whose expression decreases (C clones) and 12 which increase (H clones) in association with HER-2/ neu overexpression. Of these, five C clones and 11 H clones have been confirmed to be differentially expressed by northern blot analysis. This group includes nine genes of known function, three previously sequenced genes of relatively uncharacterized function and four novel genes without a match in GenBank. Examination of the previously characterized genes indicates that they represent sequences known to be frequently associated with the malignant phenotype, suggesting that the subtraction cloning strategy used identified appropriate target genes. In addition, differential expression of 12 of 16 (75%) cDNAs identified in the breast cancer cell lines are also seen in HER-2/ neu -overexpressing ovarian cancer cells, indicating that they represent generic associations with HER-2/ neu overexpression. Finally, up-regulation of two of the identified cDNAs, one novel and one identified but as yet uncharacterized gene, was confirmed in human breast cancer specimens in association with HER-2/ neu overexpression. Further characterization of these genes may yield insight into the fundamental biology and pathogenetic effects of HER-2/ neu overexpression in human breast and ovarian cancer cells.  相似文献   

4.
Zheng L  Ren JQ  Li H  Kong ZL  Zhu HG 《Cell research》2004,14(6):497-506
Overexpression and activation of HER-2/neu (also known as c-erbB-2), a proto-oncogene, was found in about 30% of human breast cancers, promoting cancer growth and making cancer cells resistant to chemo- and radio-therapy.Wild-type p53 is crucial in regulating cell growth and apoptosis and is found to be mutated or deleted in 60-70% of human cancers. And some cancers with a wild-type p53 do not have normal p53 function, suggesting that it is implicated in a complex process regulated by many factors. In the present study, we showed that the overexpression of HER-2/neu could decrease the amount of wild-type p53 protein via activating PI3K pathway, as well as inducing MDM2 nuclear translocation in MCF7 human breast cancer cells. Blockage of PI3K pathway with its specific inhibitor LY294002 caused G1-S phase arrest, decreased cell growth rate and increased chemo- and radio-therapeutic sensitivity in MCF7 cells expressing wild-type p53. However, it did not increase the sensitivity to adriamycin in MDA-MB-453 breast cancer cells containing mutant p53. Our study indicates that blocking PI3K pathway activation mediated by HER-2/neu overexpression may be useful in the treatment of breast tumors with HER-2/neu overexpression and wild-type p53.  相似文献   

5.
Gene amplification or HER-2/neu protein overexpression signals a poor outcome for bladder cancer patients. We investigated the anti-proliferative effect of IFN-gamma in HER-2/neu-transfected human bladder cancer cells (TCC-N5 and TCC-N10). The cells continued growing after IFN-gamma stimulation but did not activate the Janus kinase (Jak)/Stat pathway. We found Jak/Stat protein phosphatase in TCC-N5 and TCC-N10 cells with upregulated Src homology 2-containing protein tyrosine phosphatase-2 (SHP-2). After the cells had been treated with AG825, a HER-2/neu-specific inhibitor, SHP-2 expression declined, and Jak2/Stat1 reactivated. Similar results were reported in a mouse bladder cancer cell line, MBT2, with constitutive HER-2/neu overexpression. Further, AG825 pretreatment restored the anti-proliferation activity of IFN-gamma in TCC-N5 and TCC-N10 cells. Therefore, the suppression of IFN-gamma signaling in HER-2/neu-overexpressing bladder cancer cells might be due to SHP-2 upregulation. The regulation of SHP-2 by HER-2/neu provides a new target for blocking the HER-2/neu oncogenic pathway.  相似文献   

6.
The HER-2/neu oncogene, a member of the epidermal growth factor receptor or erb gene family, encodes a transmembrane tyrosine kinase receptor that has been linked to prognosis and response to therapy with the anti-HER-2-humanized monoclonal antibody, trastuzumab (Herceptin, Genentech, South San Francisco, CA) in patients with advanced metastatic breast cancer. HER-2/neu status has also been tested for its ability to predict the response of breast cancer to other therapies including hormonal therapies, topoisomerase inhibitors, and anthracyclines. This review includes an analysis of 80 published studies encompassing more than 25,000 patients designed to consider the relative advantages and disadvantages of the various methods of measuring HER-2/neu in clinical breast cancer specimens. Southern blotting, PCR amplification detection, and fluorescence in situ hybridization assays designed to detect HER-2/neu gene amplification are compared with HER-2/neu protein overexpression assays performed by immunohistochemical techniques applied to frozen and paraffin-embedded tissues and enzyme immunoassays performed on tumor cytosols. The significance of HER-2/neu overexpression in ductal carcinoma in situ and the HER-2/neu status in uncommon female breast conditions and male breast cancer are also considered. The role of HER-2/neu testing for the prediction of response to trastuzumab therapy in breast cancer is reviewed along with the current studies designed to test whether HER-2/neu status can predict the response to standard and newer hormonal therapies, cytotoxic chemotherapy, and radiation. The review will also evaluate the status of serum-based testing for circulating HER-2/neu receptor protein and its ability to predict disease outcome and therapy response.  相似文献   

7.
8.
Amplification and overexpression of the HER-2 (neu/ erbB-2) gene in human breast cancer are clearly important events that lead to the transformation of mammary epithelial cells in approximately one-third of breast cancer patients. Heterodimer interactions between HER-2 and HER-3 (erbB-3) are activated by neu differentiation factor/heregulin (HRG), and HER-2/HER-3 heterodimers are constitutively activated in breast cancer cells with HER-2 gene amplification. This indicates that inhibition of HER-2/HER-3 heterodimer function may be an especially effective and unique strategy for blocking the HER-2-mediated transformation of breast cancer cells. Therefore, we constructed a bicistronic retroviral expression vector (pCMV-dn3) containing a dominant negative form of HER-3 in which most of the cytoplasmic domain was removed for introduction into cells. By using a bicistronic retroviral vector in which the antibiotic resistance gene and the gene of interest are driven by a single promoter, we attained 100% coordinate coexpression of antibiotic resistance with the gene of interest in target cell populations. Breast carcinoma cells with HER-2 gene amplification (21 MT-1 cells) and normal mammary epithelial cells without HER-2 gene amplification from the same patient (H16N-2 cells) were infected with pCMV-dn3 and assessed for HER-2/ HER-3 receptor tyrosine phosphorylation, p85PI 3-kinase and SHC protein activation, growth factor-dependent and -independent proliferation, and transformed growth in culture. Dominant negative HER-3 inhibited the HRG-induced activation of HER-2/HER-3 and signaling in H16N-2 and 21 MT-1 cells as well as the constitutive activation of HER-2/HER-3 and signaling in 21 MT-1 cells. Responses to exogenous HRG were strongly inhibited by dominant negative HER-3. In contrast, the proliferation of cells stimulated by epidermal growth factor was not apparently affected by dominant negative HER-3. The growth factor-independent proliferation and transformed growth of 21 MT-1 cells were also strongly inhibited by dominant negative HER-3 in anchorage-dependent and independent growth assays in culture. Furthermore, the HRG-induced or growth factor-independent proliferation of 21 MT-1 cells was inhibited by dominant negative HER-3, whereas the epidermal growth factor-induced proliferation of these cells was not: this indicates that dominant negative HER-3 preferentially inhibits proliferation induced by HER-2/HER-3.  相似文献   

9.
G. Y. Kim  Y. L. Oh 《Cytopathology》2004,15(6):315-320
The current use of humanized monoclonal antibody trastuzumab for the treatment of patients with metastatic breast cancer has made evaluation of HER-2/neu status an important clinical issue. Chromogenic in situ hybridization (CISH), in which the DNA probe is detected with an immunohistochemistry (IHC)-like peroxidase reaction, has been recently developed for the assessment of HER-2/neu status in formalin-fixed breast cancer specimens. We have applied the technique of dual-colour CISH using HER-2/neu and chromosome 17 centromere probes in 27 cytological smears, and these cytological samples were obtained from scrapings of fresh breast tumours. We also investigated HER-2/neu amplification and protein overexpression in the corresponding surgical tissues by CISH and IHC using the monoclonal antibody CB11. Of the 27 cytological cases, HER-2/neu gene amplification was observed in nine cases that were positive cases (2+ and 3+) for IHC. Among the 13 IHC positive cases (2+ and 3+), four of them showed no gene amplification. Identical results for the CISH technique were obtained in the matched surgical samples. The scrape samples from fresh breast tumour offer a monolayer cell population that is especially suitable for CISH. This study has shown that the cytological smear might be a good alternative for the CISH test.  相似文献   

10.
Overexpression and activation of HER-2/neu, a proto-oncogene, play a pivotal role in cancer formation. Strong expression of HER-2/neu in cancers has been associated with poor prognosis. Reduced expression of p27(Kip1), a cyclin-dependent kinase inhibitor, correlates with poor clinical outcome in many types of carcinomas. Because many cancers with the overexpression of HER-2/neu overlap with those affected by reduced p27 expression, we studied the link between HER-2/neu oncogenic signals and p27 regulation. We found that down-regulation of p27 correlates with HER-2/neu overexpression. To address the molecular mechanism of this inverse correlation, we found that reduction of p27 is caused by enhanced ubiquitin-mediated degradation, and the HER-2/Grb2/MAPK pathway is involved in the decrease of p27 stability. Also, HER-2/neu activity causes mislocation of p27 and Jun activation domain-binding protein 1 (JAB1), an exporter of p27, into the cytoplasm, thereby facilitating p27 degradation. These results reveal that HER-2/neu signals reduce p27 stability and thus present potential points for therapeutic intervention in HER-2/neu-associated cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号