首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although multiple regulatory elements and protein factors are known to regulate the non-neuronal pathway of alternative processing of the calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA, the mechanisms controlling the neuron-specific pathway have remained elusive. Here we report the identification of Fox-1 and Fox-2 proteins as novel regulators that mediate the neuron-specific splicing pattern. Fox-1 and Fox-2 proteins function to repress exon 4 inclusion, and this effect depends on two UGCAUG elements surrounding the 3' splice site of the calcitonin-specific exon 4. In neuron-like cells, mutation of a subset of UGCAUG elements promotes the non-neuronal pattern in which exon 4 is included. In HeLa cells, overexpression of Fox-1 or Fox-2 protein decreases exon 4 inclusion. Fox-1 and Fox-2 proteins interact with the UGCAUG elements specifically and regulate splicing by blocking U2AF(65) binding to the 3' splice site upstream of exon 4. We further investigated the inter-relationship between the UGCAUG silencer elements and the previously identified intronic and exonic splicing regulatory elements and found that exon 4 is regulated by an intricate balance of positive and negative regulation. These results define a critical role for Fox-1 and Fox-2 proteins in exon 4 inclusion of calcitonin/CGRP pre-mRNA and establish a regulatory network that controls the fate of exon 4.  相似文献   

2.
Regulation of calcitonin (CT)/calcitonin gene-related peptide (CGRP) RNA processing involves the use of alternative 3' terminal exons. In most tissues and cell lines, the CT terminal exon is recognized. In an attempt to define regulatory sequences involved in the utilization of the CT-specific terminal exon, we performed deletion and mutation analyses of a mini-gene construct that contains the CT terminal exon and mimics the CT processing choice in vivo. These studies identified a 127-nucleotide intron enhancer located approximately 150 nucleotides downstream of the CT exon poly(A) cleavage site that is required for recognition of the exon. The enhancer contains an essential and conserved 5' splice site sequence. Mutation of the splice site resulted in diminished utilization of the CT-specific terminal exon and increased skipping of the CT exon in both the mini-gene and in the natural CT/CGRP gene. Other components of the intron enhancer modified utilization of the CT-specific terminal exon and were necessary to prevent utilization of the 5' splice site within the intron enhancer as an actual splice site directing cryptic splicing. Conservation of the intron enhancer in three mammalian species suggests an important role for this intron element in the regulation of CT/CGRP processing and an expanded role for intronic 5' splice site sequences in the regulation of RNA processing.  相似文献   

3.
Polypyrimidine tract-binding protein (PTB) is an abundant vertebrate hnRNP protein. PTB binding sites have been found within introns both upstream and downstream of alternative exons in a number of genes that are negatively controlled by the binding of PTB. We have previously reported that PTB binds to a pyrimidine tract within an RNA processing enhancer located adjacent to an alternative 3′-terminal exon within the gene coding for calcitonin and calcitonin gene-related peptide. The enhancer consists of a pyrimidine tract and CAG directly abutting on a 5′ splice site sequence to form a pseudoexon. Here we show that the binding of PTB to the enhancer pyrimidine tract is functional in that exon inclusion increases when in vivo levels of PTB increase. This is the first example of positive regulation of exon inclusion by PTB. The binding of PTB was antagonistic to the binding of U2AF to the enhancer-located pyrimidine tract. Altering the enhancer pyrimidine tract to a consensus sequence for the binding of U2AF eliminated enhancement of exon inclusion in vivo and exon polyadenylation in vitro. An additional PTB binding site was identified close to the AAUAAA hexanucleotide sequence of the exon 4 poly(A) site. These observations suggest a dual role for PTB in facilitating recognition of exon 4: binding to the enhancer pyrimidine tract to interrupt productive recognition of the enhancer pseudoexon by splicing factors and interacting with the poly(A) site to positively affect polyadenylation.  相似文献   

4.
Two classes of spliceosome are present in eukaryotic cells. Most introns in nuclear pre-mRNAs are removed by a spliceosome that requires U1, U2, U4, U5, and U6 small nuclear ribonucleoprotein particles (snRNPs). A minor class of introns are removed by a spliceosome containing U11, U12, U5, U4atac, and U6 atac snRNPs. We describe experiments that demonstrate that splicing of exon 5 of the rat calcitonin/CGRP gene requires both U2 snRNA and U12 snRNA. In vitro, splicing to calcitonin/ CGRP exon 5 RNA was dependent on U2 snRNA, as preincubation of nuclear extract with an oligonucleotide complementary to U2 snRNA abolished exon 5 splicing. Addition of an oligonucleotide complementary to U12 snRNA increased splicing at a cryptic splice site in exon 5 from <5% to 50% of total spliced RNA. Point mutations in a candidate U12 branch sequence in calcitonin/CGRP intron 4, predicted to decrease U12-pre-mRNA base-pairing, also significantly increased cryptic splicing in vitro. Calcitonin/CGRP genes containing base changes disrupting the U12 branch sequence expressed significantly decreased CGRP mRNA levels when expressed in cultured cells. Coexpression of U12 snRNAs containing base changes predicted to restore U12-pre-mRNA base pairing increased CGRP mRNA synthesis to the level of the wild-type gene. These observations indicate that accurate, efficient splicing of calcitonin/CGRP exon 5 is dependent upon both U2 and U12 snRNAs.  相似文献   

5.
The calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA is alternatively processed in a tissue-specific manner leading to the production of calcitonin mRNA in thyroid C cells and CGRP mRNA in neurons. A candidate calcitonin/CGRP splice regulator (CSR) isolated from rat brain was shown to inhibit calcitonin-specific splicing in vitro. CSR specifically binds to two regions in the calcitonin-specific exon 4 RNA previously demonstrated to function as a bipartate exonic splice enhancer (ESE). The two regions, A and B element, are necessary for inclusion of exon 4 into calcitonin mRNA. A novel RNA footprinting method based on the UV cross-linking assay was used to define the site of interaction between CSR and B element RNA. Base changes at the CSR binding site prevented CSR binding to B element RNA and CSR was unable to inhibit in vitro splicing of pre-mRNAs containing the mutated CSR binding site. When expressed in cells that normally produce predominantly CGRP mRNA, a calcitonin/CGRP gene containing the mutated CSR binding site expressed predominantly calcitonin mRNA. These observations demonstrate that CSR binding to the calcitonin-specific ESE regulates calcitonin/CGRP pre-mRNA splicing.  相似文献   

6.
We have previously shown that the calcitonin (CT)-encoding exon 4 of the human calcitonin/calcitonin gene-related peptide I (CGRP-I) gene (CALC-I gene) is surrounded by suboptimal processing sites. At the 5' end of exon 4 a weak 3' splice site is present because of an unusual branch acceptor nucleotide (U) and a weak poly(A) site is present at the 3' end of exon 4. For CT-specific RNA processing two different exon enhancer elements, A and B, located within exon 4 are required. In this study we have investigated the cooperation of these elements in CT exon recognition and inclusion by transient transfection into 293 cells of CALC-I minigene constructs. Improvement of the strength of the 3' splice site in front of exon 4 by the branchpoint mutation U-->A reduces the requirement for the presence of exon enhancer elements within exon 4 for CT-specific RNA processing, irrespective of the length of exon 4. Replacement of the exon 4 poly(A) site with a 5' splice site does not result in CT exon recognition, unless also one or more exon enhancer elements and/or the branchpoint mutation U-->A in front of exon 4 are present. This indicates that terminal and internal exons are recognised in a similar fashion. The number of additional enhancing elements that are required for CT exon recognition depends on the strength of the 5' splice site. Deletion of a large part of intron 4 also leads to partial exon 4 skipping. All these different elements contribute to CT exon recognition and inclusion. The CT exon is recognised as a whole entity and the sum of the strengths of the different elements determines recognition as an exon. Curiously, in one of our constructs a 5' splice site at the end of exon 4 is either ignored by the splicing machinery of the cell or recognised as a splice donor or as a splice acceptor site.  相似文献   

7.
Neurofibromatosis type 1 (NF1) is one of the most common heritable autosomal dominant disorders. Alternative splicing modulates the function of neurofibromin, the NF1 gene product, by inserting the in-frame exon 23a into the region of NF1 mRNA that encodes the GTPase-activating protein-related domain. This insertion, which is predominantly skipped in neurons, reduces the ability of neurofibromin to regulate Ras by 10-fold. Here, we report that the neuron-specific Hu proteins control the production of the short protein isoform by suppressing inclusion of NF1 exon 23a, while TIA-1/TIAR proteins promote inclusion of this exon. We identify two binding sites for Hu proteins, located upstream and downstream of the regulated exon, and provide biochemical evidence that Hu proteins specifically block exon definition by preventing binding of essential splicing factors. In vitro analyses using nuclear extracts show that at the downstream site, Hu proteins prevent binding of U1 and U6 snRNPs to the 5′ splice site, while TIAR increases binding. Hu proteins also decrease U2AF binding at the 3′ splice site located upstream of exon 23a. In addition to providing the first mechanistic insight into tissue-specific control of NF1 splicing, these studies establish a novel strategy whereby Hu proteins regulate RNA processing.  相似文献   

8.
9.
10.
We are using the tissue-specific splicing of myosin phosphatase targeting subunit (MYPT1) as a model to investigate smooth muscle phenotypic diversity. We previously identified a U-rich intronic enhancer flanking the 5' splice site (IE1), and a bipartite exonic enhancer/suppressor, that regulate splicing of the MYPT1 central alternative exon. Here we show that T-cell inhibitor of apoptosis (TIA-1) and T-cell inhibitor of apoptosis-related (TIAR) proteins bind to the IE1. Co-transfection of TIA expression vectors with a MYPT1 mini-gene construct increase splicing of the central alternative exon. TIA proteins do not enhance splicing when the palindromic exonic splicing enhancer (ESE) is mutated, indicating that TIAs are necessary but not sufficient for splicing. The ESE specifically binds SRp55 and SRp20 proteins, supporting a model in which both SR and TIA proteins binding to their cis-elements are required for the recruitment of the splicing complex to a weak 5' splice site. Inactivation of TIA proteins in the DT40 cell line (TIA-1(-/-)TIAR(+/-)) reduced the splicing of the central alternative exon of the endogenous MYPT1 as well as stably transfected MYPT1 minigene constructs. Splicing of the MYPT1 3' alternative exon and the MLC(17) alternative exon were unaffected, suggesting that TIA proteins regulate a subset of smooth muscle/nonmuscle alternative splicing reactions. Finally, reduced RNA binding and reduced expression of the TIA and SR proteins in phasic (gizzard) smooth muscle around hatching coincided with the switch from exon inclusion to exon skipping, suggesting that loss of TIA and SR enhancer activity may play a role in the developmental switch in MYPT1 splicing.  相似文献   

11.
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.  相似文献   

12.
Important general insights into the mechanism of pre-mRNA splicing have emerged from studies of the U12-dependent spliceosome. Here, photochemical cross-linking analyses during U12-dependent spliceosome assembly have surprisingly revealed that an upstream 5' exon region is required for establishing two essential catalytic core interactions, U12/U6atac helix Ib and U6atac/5' splice site contacts, but not for U5/5' exon interactions or partial unwinding of U4atac/U6atac. A novel intermediate, representing an alternative pathway for catalytic core formation, is a ternary snRNA complex containing U4atac/U6atac stem II and U12/U6atac helix Ia that forms even without U6atac replacing U11 at the 5' splice site. A powerful oligonucleotide displacement method suggests that the blocked complexes analyzed to deduce the interdependence of these multiple RNA exchanges are authentic intermediates in U12-dependent spliceosome assembly.  相似文献   

13.
Fas exon 6 can be included or skipped to generate mRNAs encoding, respectively, a membrane bound form of the receptor that promotes apoptosis or a soluble isoform that prevents programmed cell death. We report that the apoptosis-inducing protein TIA-1 promotes U1 snRNP binding to the 5' splice site of intron 6, which in turn facilitates exon definition by enhancing U2AF binding to the 3' splice site of intron 5. The polypyrimidine tract binding protein (PTB) promotes exon skipping by binding to an exonic splicing silencer and inhibiting the association of U2AF and U2 snRNP with the upstream 3' splice site, without affecting recognition of the downstream 5' splice site by U1. Remarkably, U1 snRNP-mediated recognition of the 5' splice site is required both for efficient U2AF binding and for U2AF inhibition by PTB. We propose that TIA-1 and PTB regulate Fas splicing and possibly Fas-mediated apoptosis by targeting molecular events that lead to exon definition.  相似文献   

14.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

15.
16.
17.
U12 snRNA is required for branch point recognition in the U12-dependent spliceosome. Using site-specific cross-linking, we have captured an unexpected interaction between the 5' end of the U12 snRNA and the -2 position upstream of the 5' splice site of P120 and SCN4a splicing substrates. The U12 snRNA nucleotides that contact the 5' exon are the same ones that form the catalytically important helix Ib with U6atac snRNA in the spliceosome catalytic core. However, the U12/5' exon interaction is transient, occurring prior to the entry of the U4atac/U6atac.U5 tri-snRNP to the spliceosome. This suggests that the helix Ib region of U12 snRNA is positioned near the 5' splice site early during spliceosome assembly and only later interacts with U6atac to form helix Ib. We also provide evidence that U12 snRNA can simultaneously interact with 5' exon sequences near 5' splice site and the branch point sequence, suggesting that the 5' splice site and branch point sequences are separated by <40 to 50 A in the complex A of the U12-dependent spliceosome. Thus, no major rearrangements are subsequently needed to position these sites for the first step of catalysis.  相似文献   

18.
Spliceosome formation is initiated by the recognition of the 5′ splice site through formation of an RNA duplex between the 5′ splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5′ splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5′ splice site sequence for base pairing with U6 snRNA and to form the active spliceosome. Here, we investigated whether hyperstabilization of the U1 snRNA/5′ splice site duplex interferes with splicing efficiency in human cell lines or nuclear extracts. Unlike observations in Saccharomyces cerevisiae, we demonstrate that an extended U1 snRNA/5′ splice site interaction does not decrease splicing efficiency, but rather increases 5′ splice site recognition and exon inclusion. However, low complementarity of the 5′ splice site to U1 snRNA significantly increases exon skipping and RNA degradation. Although the splicing mechanisms are conserved between human and S.cerevisiae, these results demonstrate that distinct differences exist in the activation of the spliceosome.  相似文献   

19.
Pre-mRNA splicing requires dramatic RNA rearrangements hypothesized to be catalyzed by ATP-dependent RNA unwindases of the DExD/H box family. In a rearrangement critical for the fidelity of 5' splice site recognition, a base-pairing interaction between the 5' splice site and U1 snRNA must be switched for a mutually exclusive interaction between the 5' splice site and U6 snRNA. By lengthening the U1:5' splice site duplex, we impeded this switch in a temperature-dependent manner and prevented formation of the spliceosome's catalytic core. Using genetics, we identified the DExD/H box protein Prp28p as a potential mediator of the switch. In vitro, the switch requires both Prp28p and ATP. We propose that Prp28p directs isomerization of RNA at the 5' splice site and promotes fidelity in splicing.  相似文献   

20.
J M Dungan  K P Watkins    N Agabian 《The EMBO journal》1996,15(15):4016-4029
The existence of the Trypanosoma brucei 5' splice site on a small RNA of uniform sequence (the spliced leader or SL RNA) has allowed us to characterize the RNAs with which it interacts in vivo by psoralen crosslinking treatment. Analysis of the most abundant crosslinks formed by the SL RNA allowed us previously to identify the spliced leader-associated (SLA) RNA. The role of this RNA in trans-splicing, as well as the possible existence of an analogous RNA interaction in cis-splicing, is unknown. We show here that the 5' splice site region of the SL RNA is also crosslinked in vivo to a second small RNA. Although it is very small and lacks a 5' trimethylguanosine (TMG) cap, the SLA2RNA possesses counterparts of the conserved U5 snRNA stem-loop 1 and internal loop 1 sequence elements, as well as a potential trypanosome snRNA core protein binding site; these combined features meet the phylogenetic definition of U5 snRNA. Like U5, the SLA2 RNA forms an RNP complex with the U4 and U6 RNAs, and interacts with the 5' splice site region via its putative loop 1 sequence. In a final analogy with U5, the SLA2 RNA is found crosslinked to a molecule identical to the free 5' exon splicing intermediate. These data present a compelling case for the SLA2 RNA not only as an active trans-spliceosomal component, but also for its identification as the trypanosome U5 structural homolog. The presence of a U5-like RNA in this ancient eukaryote establishes the universality of the spliceosomal RNA core components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号