首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Wheat grain yield consists of three components: spikes per plant, grains per spike (i.e. head or ear), and grain weight; and the grains per spike can be dissected into two subcomponents: spikelets per spike and grains per spikelet. An increase in any of these components will directly contribute to grain yield. Wheat morphology biology tells that a wheat plant has no lateral meristem that forms any branching shoot or spike. In this study, we report two novel shoot and spike traits that were produced from lateral meristems in bread wheat. One is supernumerary shoot that was developed from an axillary bud at the axil of leaves on the elongated internodes of the main stem. The other is supernumerary spike that was generated from a spikelet meristem on a spike. In addition, supernumerary spikelets were generated on the same rachis node of the spike in the plant that had supernumerary shoot and spikes. All of these supernumerary shoots/spikes/spikelets found in the super wheat plants produced normal fertility and seeds, displaying huge yield potential in bread wheat.  相似文献   

2.
The hypothesis being tested is that Super Dwarf wheat, Triticum aestivum L., plants in the Svet Greenhouse onboard the Russian Space Station Mir will complete a life cycle in spaceflight, providing that the environmental conditions necessary for adequate growth on Earth are supplied. Twenty six seeds of wheat were planted in each of 2 rows of 2 root compartments for a total of 104 seeds in Svet. Germination rate at 7 d was 56 and 73% on Mir and 75 and 90% in ground-based controls. Plants were grown throughout the whole cycle of ontogenesis (123 d) with samples gathered at different times to validate the morphological and reproductive stages of the plants. Young plants showed vigorous early seedling growth, with large biomass production, including the formation of 280 floral spikes. Upon return to Earth, comparative analyses showed that the number of tillers and flowers per spikelet were 63.2% and 40% greater, respectively, in Mir-grown plants than in the controls. By contrast, the stem length (52.4%), spike mass (49.2%) and length (23.1%), awn length (75.7%), number of spikelets per spike (42.8%) and number of seeds per spike (100% sterile) from Mir-grown plants were substantially less than the controls. Distribution of moisture and roots throughout the substrate was very good. All florets on Mir-grown spikes ceased development at the same stage of ontogeny. Lack of caryopses formation was attributed to male sterility occurring at different stages of staminal development. Anthers failed to dehisce and pollen grains were smaller and shriveled compared to the controls, suggesting a chronic stress had occurred in the Svet growth chamber. Recent ground-based studies indicated that ethylene, which was measured at 0.3 to 1.8 mg kg-1 in the Mir, almost certainly could have induced male sterility in the wheat plants grown on the Mir.  相似文献   

3.
In these studies the optimum temperature indices for spikelet differentiation were found. The critical period determining the number of spikelets on a spike lies between the single ridge stage and the stage of glume differentiation. During this period a daily temperature below 7.5°C is favourable for differentiation of further spikelets. The processes of differentiation of wheat spikes need certain accumulated temperatures for a mean daily temperature above 0°C. The relationship between the rate of spikelet differentiation and temperature during the differentiation period, and the of these periods are discussed. According to the effect of climate in early spring on the number of differentiated spikelets of winter wheat, three climatic types in early spring are suggested.  相似文献   

4.
In a field experiment, comprising four spring wheat cultivars,the frequency and final weight of the grains developing fromeach individual floret were determined in intact spikes andin spikes of which up to nine spikelets had been removed. Theextent of damage caused by the cutting procedure was estimated. Characteristic distributions of the frequencies and weightsof the individual grains were found for each cultivar. Removalof spikelets resulted, in most cases, in a small increase inthe number of grains and in a considerable increase in the weightof the grains of the remaining spikelets. These increases compensatedonly partially, and differently in the different cultivars,for the loss of the removed spikelets. Defoliation at the timeof earing caused a subsequent reduction in grain yield of intactspikes but no reduction in the yield of spikes from which ninespikelets had been removed. The removal of the upper floretsin each spikelet resulted in a certain increase in the weightof the two basal grains. It is concluded that an increase in the number of spikeletsper spike may reduce grain weight but will nevertheless contributeto yield. The number of grains per spikelet is cultivar dependentbut not causally associated with grain weight. Grain set indistal florets is expected to add rather small grains to thespike's yield. Under conditions of limited supplies it may causea reduction in the weight of the basal grains. Any increasein grain weight is anticipated to contribute to grain yieldand is not liable to affect spikelets per spike or grains perspikelet. Wheat cultivars, Triticum aestivum, growth of inflorescence, grain yield, spikelet number  相似文献   

5.
Summary Heritability estimates of five characters of the wheat plant were studied in five crosses involving six cultivars of bread wheat. Parents, F1, F2 and backcrosses to both parents were used in the estimation of the genetic parameters.Heritability was low for number of fertile spikes/plant, moderate for number of spikelets/spike, number of kernels/spike, 1000-kernel weight and moderately high for number of kernels/spike. Evidence for mainly nonadditive gene effects were observed in the expression of number of fertile spikes and 1000-kernel weight. Although nonadditives contributed to a lesser degree to the gene action, additives seemed to be the most important genetic expression regulating number of spikelets/spike, number of kernels/spike, and number of kernels/spikelet. Except for number of fertile spikes/plant, selection in F2-populations seems to be promising.  相似文献   

6.
In the supernumerary spikelet wheat, AUS159I0, the supernumeraryspikelet primordia appeared just after the ear reached the terminalspikelet stage. Appearance of the primordia of the multiplesessile spikelets preceded that of indeterminate rachilla spikelets.Supernumerary spikelets had a lower number of potentially fertileflorets per spikelet than normal (non-supernumerary) spikeletsin the ear and thus a smaller number of grains per spikelet.Mean weight per grain in the supernumerary spikelet wheat waslower than in the cultivar, Meering, without supernumerary spikelets.Total grain number in the supernumerary spikelet ear was greaterthan in the normal ear despite the lower spikelet fertilityin the former. Within the supernumerary spikelet ear the multiplesessile spikelets had a higher number of grains per spikeletand mean weight per grain than the indeterminate rachilla spikelets.It appears possible to improve the productivity of the supernumeraryspikelet ear by breeding for reduced expression of the indeterminaterachilla spikelets. Wheat, ear development, floret survival, supernumerary spikelets, grain number  相似文献   

7.
西藏小麦资源在都江堰试种的表现及评价   总被引:10,自引:0,他引:10  
对125份来源于西藏的小麦地方品种进行农艺性状分析和评价。结果显示,西藏小麦植株高度总体偏高,少数适中。分蘖数多数在10个以下,少数偏多。穗长、小穗数的单位长度着生的小穗数存在明显差异,存在一些密穗类型和多小穗类型。多数小麦品种穗粒数不少,但千粒重明显偏低。性状相关分析表明,随着分集数增多、穗长增长、小穗数增多,株高有增加的趋势,而株高的增加又导致了千粒重的降低。小穗数多其穗长通常比较长。中时西藏小麦资源进行了评价、利用方式进行了探讨、在都江堰与西藏表现差异的原因进行了分析。  相似文献   

8.
Earliness per se genes are those that regulate flowering time independently of vernalization and photoperiod, and are important for the fine tuning of flowering time and for the wide adaptation of wheat to different environments. The earliness per se locus Eps-A(m)1 was recently mapped within a 0.8 cM interval on chromosome 1A(m)L of diploid wheat Triticum monococcum L., and it was shown that its effect was modulated by temperature. In this study, this precise mapping information was used to characterize the effect of the Eps-A(m)1 region on both duration of different developmental phases and spikelet number. Near isogenic lines (NILs) carrying the Eps-A(m)1-l allele from the cultivated accession DV92 had significantly longer vegetative and spike development phases (P<0.0001) than NILs carrying the Eps-A(m)1-e allele from the wild accession G3116. These differences were paralleled by a significant increase in the number of spikelets per spike, in both greenhouse and field experiments (P<0.0001). Significant interactions between temperature and Eps-A(m)1 alleles were detected for heading time (P<0.0001) but not for spikelet number (P=0.67). Experiments using NILs homozygous for chromosomes with recombination events within the 0.8 cM Eps-A(m)1 region showed that the differences in number of spikelets per spike were linked to the differences in heading time controlled by the Eps-A(m)1 locus. These results indicate that the differences in these two traits are either pleiotropic effects of a single gene or the effect of closely linked genes. A similar effect on spikelet number was detected in the distal region of chromosome 1AL in common wheat (T. aestivum L.).  相似文献   

9.
The effect of the nonionic detergent polyethylene glycol octylphenyl ester, Triton X-100 (TX-100) on the spring common wheat cultivar Alem was studied under laboratory and field conditions. Treatment of seeds and vegetating plants with 0.1 and 0.01% TX-100 (aqueous solution) changed the spike morphology in all plants of the first posttreatment generation. The changes were inherited by the second generation without additional treatment with TX-100. Square-headed dense spikes with doubled spikelets of the duospiculum type (an additional spikelet at the top of the main one), elongate dense and lax spikes, mid-dense spikes, and fusiform spikes were observed. An epigenetic nature was assumed for the observed changes.  相似文献   

10.
Three groups of winter wheat (Triticum aestivum L.) genotypes having spike fertility genes (SFG) were used in field trials: (1) Tetrastichon sessile spikelets (TSS), (2) Normal spikelets (NS), (3) Indeterminate rachilla spikelets (IRS). The capacity of conducting system of the peduncle and the ear sink capacity of the main stem have been measured. There was a highly significant positive correlation (r = 0.899 and higher) between peduncle diameter and parameters quantifying peduncle vascular system. Compared with the control cultivar Hana, the TSS and NSS genotypes had higher both the number of vascular bundles, phloem and bundle cross section area and kernel number per ear. However, the highest kernel number per ear was found in the IRS genotypes although their bundle and phloem area was only equal or even lower then that of the variety Hana. Further studies are needed in developmental anatomy of spikes and stems to elucidate also differences in the relationships between the conducting capacity and kernel number per spikes in the TSS, NS and IRS genotypes.  相似文献   

11.
A genetic playground for enhancing grain number in cereals   总被引:1,自引:0,他引:1  
Improving the yield stability of cereal crops with a view to bolstering global food security is an important priority. The components of final grain number per plant at harvest are determined by fertile spikes per plant, number of fertile spikelets per spike and number of grains per spikelet. In this review article, we focus on the genetic factors of floral development and inflorescence architecture known to influence grain number and provide a broad overview of genes and genetic pathways that potentially can be manipulated to increase the yield of cereal crops, in particular wheat (Triticum aestivum) and barley (Hordeum vulgare). In addition, we discuss the outcome of multidisciplinary genomics knowledge to identify potential gene targets to develop conceptual ideotypes to meet the future demand.  相似文献   

12.
The number and developmental stages of florets were determinedin each spikelet of the spike in the main shoots of spring wheat.Samples were taken frequently from plants grown in a phytotronand in a nitrogen application field-test. Ten stages of development,from floret initiation until anthesis, were recognized and described. Inter-spikelet variation in the total number of initiated floretswas rather small. However, the number of florets at advancedstages of development, as well as the number of grains, washighest in the central spikelets in which florets initiatedfirst. Floret initiation did not proceed beyond spike emergence,whereafter the distal florets and the spikelet apex degenerated.Grain-set was restricted to florets which had developed at leastto the stage of visible anther lobes at spike emergence. Thenumber of these florets was increased significantly by nitrogenapplication. Wheat, Triticum aestivum L., spikelet, floret, grain set, nitrogen  相似文献   

13.
Effects of exogenous hormones on floret development and grain setin wheat   总被引:1,自引:0,他引:1  
At specific stages during floret development, solutions of IAA,GA3, zeatin and ABA were injected into the leaf sheath around theyoung spike of wheat (Triticum aestivum L.) to study theregulating effects of exogenous hormones on floret development. Zeatin promotedfloret development and significantly increased the number of fertile florets aswell as grain set, especially at the stage of anther-lobe formation. Zeatinalsoincreased the sugar concentrations in spikes at anthesis. In contrast, IAA,GA3 and ABA inhibited floret development, with different patternsforeach of the hormones. IAA inhibited the development of the whole spike and allflorets in the spikelets such that grain loss occurred in all positions in thespikelets. GA3 increased the number of fertile florets per spike,butdecreased grain set of the third floret in each spikelet, especially whenapplied at terminal spikelet formation. ABA inhibited floret development, anddecreased the number of fertile florets and grain set at almost all developmentstages, except at anther-lobe formation. The inhibitory effect of ABA wasmainlyon the first and third florets in each spikelet.  相似文献   

14.
Kernel number per spike (KNPS) is one of the key factors affecting wheat yield, which can be significantly reduced by lower fertility or sterility of the apical and basal spikelets. In this study, the spikelet number per spike (SNPS), thousand kernel weight (TKW), KNPS, total grain numbers of the top three apical spikelets (GNAS), and total grain numbers of the bottom three basal spikelets (GNBS) of 212 wheat lines were recorded from five different environmental conditions. These 212 accessions were genotyped using the 9K iSelect SNP Beadchip. A total of 3269 SNP markers were used for genome-wide association analysis (GWAS). One hundred twelve significant marker-trait associations (MTAs) were identified. Twenty-two MTAs were identified in at least two environments and two of them showed association with two or more grain setting properties. Different loci showed an additive effect with both GNAS and GNBS being much higher in the lines with more favorite alleles. Two SNP loci, wsnp_Ex_c31799_40545376 and wsnp_BF293620A_Ta_2_3, showed the largest effects on increasing KNPS through improved fertility of apical and basal spikelets, respectively. These MTAs have the potential to be used in future marker-assisted selection.  相似文献   

15.
Yield studies show that increases in grain yield are always accompanied by an increase in grain number and, hence, further increases in yield potential may require additional improvements in grain number. The improvement of modern durum wheat was mainly based on the introduction of semidwarf genes. A 2‐year field drought stress experiment, concerning two different genotype groups (landraces vs modern cultivars), was carried out under a rainout shelter in order (a) to assess the effect of water deficit on floret dynamics and grain number determination, (b) to explore the relationship between plant water status with grain number per spike and its components (i.e., spikelets per spike, fertile florets per spikelet and grain set) and (c) to quantify the importance of several plant traits in determining the final number of grains per spike and fertile florets per spike when the main source of variation is water availability. Compared to control (well irrigated), grain number per spike was reduced, depending on year, genotype and water availability level, by 12.4–58.7% and this reduction was evident almost in all spikelet positions along the spike. Although there were some doubts in the past about the increased sensitivity of semidwarf cultivars to drought stress, they were not confirmed from our results. In most of the cases, the variation in plant water status (by means of water potential index [WPI]) during floret primordia phase (FPP) explained most of the variance in grain number per spike, fertile florets per spikelet, grain set and fertile spikelets per spike. In general, increasing water stress intensity decreased grain number per spike by an average rate of 13.5 and 9.4 grains per 0.2 MPa decrease in WPI, in modern cultivars and landraces, respectively. However, seasonal and genotypic effects were evident by modifying the slopes of the linear regressions between WPI and the studied plant traits. Commonality analysis revealed that the number of fertile florets per spikelet was the best predictor of grain number per spike, indicating that there is still much space for further improvement for this trait in landraces. However, this trait has been clearly improved in modern cultivars, especially at the basal and central spikelets. Although the number of spikelets per spike was the best unique predictor of the number of grains per spike in modern cultivars, grain set presented the highest total effect.  相似文献   

16.
The objectives of this study were to induce callus from single immature wheat embryos, produce multiple seedlings from the induced callus, and analyse the somaclonal regenerants for potential grain production in a space garden. Immature wheat, Triticum aestivum L. (cv. PCYT-10), embryos were excised 10 to 12 days post-anthesis and cultured on modified Murashige & Skoog's inorganic salts. Embryos cultured on medium containing kinetin (6-furfurylaminopurine) at 0.5 mgl–1 plus 2 or 3 mgl–1 dicamba (1-methoxy-3,6-dichlorobenzoic acid) or 0.2 mgl–1 2,4-dichlorophenoxyacetic acid produced calli from which 24, 35 and 39% of the explant tissue exhibited regenerants, respectively. The size of flag leaves, plant heights, tillers per plant, spike lengths, awn lengths, and seeds per spike were significantly different in regenerants of two-selfed recurrent generations (SC1, SC2) than in parental controls. However, there were no significant differences in spikelets per spike between the SC2 and parental controls. Desirable characteristics that were obtained included longer spikes, more seeds per spike, supernumerary spikelets, and larger flag leaves, variants that should be useful in wheat improvement programs.Contribution from the Plant Science Dept., Utah State University, Logan, UT 84322-4820. Utah Agricultural Experiment Station Journal Paper No. 3611  相似文献   

17.
Fourteen cultivars of north temperate, Australian, Mexican and Rhodesian origins, were grown in eight treatments: 2-day-lengths (10 h and 14h) × two temperature regimes (18/13 °C and 25/20 °C) × two seed vernalization treatments (unvernalized and 28 days at 1–2 °C). Numbers of days to 50 % ear emergence, leaf numbers and spikelet numbers of the main shoots were recorded. The north temperate cultivars were the most sensitive to daylength: in long days their mean spikelet number was 15 and they headed in 40–50 days, while in short days they had a mean of 24 spikelets and failed to head in 100 days. The Rhodesian cultivars were the least sensitive, but nevertheless headed 20–30 days earlier and had three to five fewer spikelets per ear in long days. The effects of vernalization on the tropical cultivars were related to maturity class: they ranged from negligible in early cultivars such as Sonora 64 and Devuli to decreases of 20 days to heading and seven spikelets in late cultivars such as Mexico 120 and Cajeme 71 in long days. The effects of temperature varied with cultivar and with vernalization treatment. Early cultivars and vernalized late cultivars headed earlier and had fewer spikelets in the warmer regimes while unvernalized late cultivars tended to have more spikelets and headed later. It is suggested that some vernalization of these late cultivars took place in the cooler regime. The significance of the results for the understanding of the physiological basis of the adaptation of wheat cultivars to different climatic zones is discussed.  相似文献   

18.
Summary The yield response of a common spring wheat cultivar,Triticum aestivum, to inoculation withAzospirillum brasilense was studied at four levels of N fertilization. Plant yield increased due to the inoculation treatment only at medium and high levels of N fertilization, with a maximum yield increase of about 8.0 per cent at the highest level (approximately 1.0 g of pure N per plant). Yield increase was mostly due to an increase in the number of grains per spike, and at the highest level of fertilization, also due to a higher number of spikes per plant. At all N levels, the inoculation caused an increase of 0.5–1.4 per cent in the number of fertile spikelets per main spike.Grain protein percentage was unaffected by the inoculation, though significantly increase due to the fertilization treatments.The occurrence of maximum yield response at the highest N level, the response by early-determined yield components, i.e. spikelet number, and the unaffected grain protein content are in accord with the suggestion that the contribution ofAzospirillum brasilense to wheat yield is not through N2-fixation.  相似文献   

19.
20.
The number of leaves on the main culm was correlated with morphological changes in the wheat spike during development, up to the terminal spikelet stage. The developmental changes were divided into nine stages, which were compared with stages described by other investigators. Several environmental conditions were utilized to determine the consistency of morphological correlations. Although the different environments did influence the length of time required to reach the various stages, the relationship between leaf number and stage of spike development was consistent. Regardless of environmental conditions, all stages were evident. Vernalization period affected the number of spikelets. Plants vernalized 6 wk produced 17–19 spikelets, compared to 21–24 spikelets on plants vernalized 3 wk. There were three major morphological events during spike development: 1) the change from vegetative to reproductive growth, 2) lateral spikelet development, and 3) the initiation and development of the terminal spikelet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号