首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
The objective of this study was to test whether elevated [CO2], [O3] and nitrogen (N) fertility altered leaf mass per area (LMPA), non‐structural carbohydrate (TNC), N, lignin (LTGA) and proanthocyanidin (PA) concentrations in cotton (Gossypium hirsutum L.) leaves and roots. Cotton was grown in 14 dm3 pots with either sufficient (0·8 g N dm ? 3) or deficient (0·4 and 0·2 g N dm ? 3) N fertilization, and treated in open‐top chambers with either ambient or elevated ( + 175 and + 350 μ mol mol ? 1) [CO2] in combination with either charcoal‐filtered air (CF) or non‐filtered air plus 1·5 times ambient [O3]. At about 50 d after planting, LMPA, starch and PA concentrations in canopy leaves were as much as 51–72% higher in plants treated with elevated [CO2] compared with plants treated with ambient [CO2], whereas leaf N concentration was 29% lower in elevated [CO2]‐treated plants compared with controls. None of the treatments had a major effect on LTGA concentrations on a TNC‐free mass basis. LMPA and starch levels were up to 48% lower in plants treated with elevated [O3] and ambient [CO2] compared with CF controls, although the elevated [O3] effect was diminished when plants were treated concurrently with elevated [CO2]. On a total mass basis, leaf N and PA concentrations were higher in samples treated with elevated [O3] in ambient [CO2], but the difference was much reduced by elevated [CO2]. On a TNC‐free basis, however, elevated [O3] had little effect on tissue N and PA concentrations. Fertilization treatments resulted in higher PA and lower N concentrations in tissues from the deficient N fertility treatments. The experiment showed that suppression by elevated [O3] of LMPA and starch was largely prevented by elevated [CO2], and that interpretation of [CO2] and [O3] effects should include comparisons on a TNC‐free basis. Overall, the experiment indicated that allocation to starch and PA may be related to how environmental factors affect source–sink relationships in plants, although the effects of elevated [O3] on secondary metabolites differed in this respect.  相似文献   

3.
Summary Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 l l–1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot ratios declined under carbon dioxide enrichment but increased under low nutrient availability, thus the ratio was apparently controlled by changes in carbon allocation to shoot mass alone. Growth under CO2 enrichment increased the starch concentrations of leaves grown under both nutrient regimes, while increased CO2 and low nutrient availability acted in concert to reduce leaf nitrogen concentration and water content. Carbon dioxide enrichment and soil nutrient limitation both acted to increase the balance of leaf storage carbohydrate versus nitrogen (C/N). The two treatment effects were significantly interactive in that nutrient limitation slightly reduced the C/N balance among the high-CO2 plants. Leaf volatile terpene concentration increased only in the nutrient limited plants and did not follow the overall increase in leaf C/N ratio. Grasshopper consumption was significantly greater on host leaves grown under CO2 enrichment but was reduced on leaves grown under low nutrient availability. An overall negative relationship of consumption versus leaf volatile concentration suggests that terpenes may have been one of several important leaf characteristics limiting consumption of the low nutrient hosts. Digestibility of host leaves grown under the high CO2 treatment was significantly increased and was related to high leaf starch content. Grasshopper growth efficiency (ECI) was significantly reduced by the nutrient limitation treatment but co-varied with leaf water content.  相似文献   

4.
Control of seed development in Arabidopsis thaliana by atmospheric oxygen   总被引:2,自引:1,他引:1  
Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5·1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2·5, 5·1, 10·1, 16·2 and 21·3 kPa O2, 0·035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16·2 kPa, and seeds from plants grown in 2·5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5·1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5·1 kPa O2, at around the curled cotyledon stage in 10·1 kPa O2, and at the premature stage in 16·2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2·5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis .  相似文献   

5.
Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C3 species grown in photon irradiances of 200 and 1000 µmol m?2 s?1. Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high‐light‐grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light‐saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low‐light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low‐light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important.  相似文献   

6.
Different parameters that vary during leaf development may be affected by light intensity. To study the influence of different light intensities on primary leaf senescence, sunflower (Helianthus annuus L.) plants were grown for 50 days under two photon flux density (PFD) conditions, namely high irradiance (HI) at 350 μmol(photon) m?2 s?1 and low irradiance (LI) at 125 μmol(photon) m?2 s?1. Plants grown under HI exhibited greater specific leaf mass referred to dry mass, leaf area and soluble protein at the beginning of the leaf development. This might have resulted from the increased CO2 fixation rate observed in HI plants, during early development of primary leaves. Chlorophyll a and b contents in HI plants were lower than in LI plants in young leaves. By contrast, the carotenoid content was significantly higher in HI plants. Glucose concentration increased with the leaf age in both treatments (HI and LI), while the starch content decreased sharply in HI plants, but only slightly in LI plants. Glucose contents were higher in HI plants than in LI plants; the differences were statistically significant (p<0.05) mainly at the beginning of the leaf senescence. On the other hand, starch contents were higher in HI plants than in LI plants, throughout the whole leaf development period. Nitrate reductase (NR) activity decreased with leaf ageing in both treatments. However, the NR activation state was higher during early leaf development and decreased more markedly in senescent leaves in plants grown under HI. GS activity also decreased during sunflower leaf ageing under both PFD conditions, but HI plants showed higher GS activities than LI plants. Aminating and deaminating activities of glutamate dehydrogenase (GDH) peaked at 50 days (senescent leaves). GDH deaminating activity increased 5-fold during the leaf development in HI plants, but only 2-fold in LI plants. The plants grown under HI exhibited considerable oxidative stress in vivo during the leaf senescence, as revealed by the substantial H2O2 accumulation and the sharply decrease in the antioxidant enzymes, catalase and ascorbate peroxidase, in comparison with LI plants. Probably, systemic signals triggered by a high PFD caused early senescence and diminished oxidative protection in primary leaves of sunflower plants as a result.  相似文献   

7.
Influence of elevated carbon dioxide on water relations of soybeans   总被引:8,自引:1,他引:7       下载免费PDF全文
Soybean (Glycine max L. Merrill cv `Bragg') plants were grown in pots at six elevated atmospheric CO2 concentrations and two watering regimes in open top field chambers to characterize leaf xylem potential, stomatal resistance and conductance, transpiration, and carbohydrate contents of the leaves in response to CO2 enrichment and water stress conditions. Groups of plants at each CO2 concentration were subjected to water stress by withholding irrigation for 4 days during the pod-filling stage.

Under well watered conditions, the stomatal conductance of the plants decreased with increasing CO2 concentration. Therefore, although leaf area per plant was greater in the high CO2 treatments, the rate of water loss per plant decreased with CO2 enrichment. After 4 days without irrigation, plants in lower CO2 treatments showed greater leaf tissue damage, lower leaf water potential, and higher stomatal resistance than high CO2 plants. Stomatal closure occurred at lower leaf water potentials for the low CO2 grown plants than the high CO2 grown plants. Significantly greater starch concentrations were found in leaves of high CO2 plants, and the reductions in leaf starch and increases in soluble sugars due to water stress were greater for low CO2 plants. The results showed that even though greater growth was observed at high atmospheric CO2 concentrations, lower rates of water use delayed and, thereby, prevented the onset of severe water stress under conditions of low moisture availability.

  相似文献   

8.
Three-week-old sugar beet (Beta vulgaris L.) seedlings were grown for an additional four weeks under controlled conditions: in river sand watered with a modified Knop mixture containing one half-fold (0.5N), standard (1N), and or threefold (3N) nitrate amount, at the irradiance of 90 W/m2 PAR, and at the carbon dioxide concentrations of 0.035% (1C treatment) or 0.07% (2C treatment). The increase in the carbon dioxide concentration and in the nitrogen dose resulted in an increase in the leaf area and the leaf and root dry weight per plant. With the increase in the nitrogen dose, morphological indices characterizing leaf growth increased more noticeably in 1C plants than in 2C plants. And vice versa, the effects of increased CO2 concentration were reduced with the increase in the nitrogen dose. Roots responded to the changes in the CO2 and nitrate concentrations otherwise than leaves. At a standard nitrate dose (1N), the contents of proteins and nonstructural carbohydrates (sucrose and starch) in leaves depended little on the CO2 concentration. At a double CO2 concentration, the content of chlorophyll somewhat decreased, and the net photosynthesis rate (P n) calculated per leaf area unit increased. An increase in the nitrogen dose did not affect the leaf carbohydrate content of the 1C and 2C plants except the leaves of the 2C-3N plants, where the carbohydrate content decreased. In 1C and 2C plants, an increase in the nitrogen dose caused an increase in the protein and chlorophyll content. Specific P n values somewhat decreased in 1C-0.5N plants and had hardly any dependence on the nitrate dose in the 2C plants. The carbohydrate content in roots did not depend on the CO2 concentration, and the content was the highest at 0.5N. Characteristic nitrogen dose-independent acclimation of photosynthesis to an increased carbon dioxide concentration, which was postulated previously [1], was not observed in our experiments with sugar beet grown at doubled carbon dioxide concentration.  相似文献   

9.
Water deficit is a very serious constraint on N2 fixation rates and grain yield of soybean (Glycine max Merr.). Ureides are transported from the nodules and they accumulate in the leaves during soil drying. This accumulation appears responsible for a feedback mechanism on nitrogen fixation, and it is hypothesized to result from a decreased ureide degradation in the leaf. One enzyme involved in the ureide degradation, allantoate amidohydrolase, is manganese (Mn) dependent. As Mn deficiency can occur in soils where soybean is grown, this deficiency may aggravate soybean sensitivity to water deficit. In situ ureide breakdown was measured by incubating soybean leaves in a 5 mol m ? 3 allantoic acid solution for 9 h before sampling leaf discs in which remnant ureide was measured over time. In situ ureide breakdown was dramatically decreased in leaves from plants grown without Mn. At the plant level, allantoic acid application in the nutrient solution of hydroponically grown soybean resulted in a higher accumulation of ureide in leaves and lower acetylene reduction activity (ARA) by plants grown with 0 mol m ? 3 Mn than those grown with 6·6 mol m ? 3 Mn. Those plants grown with 6·6 mol m ? 3 Mn in comparison with those grown with 52·8 mol m ? 3 Mn had, in turn, higher accumulated ureide and lower ARA. To determine if Mn level also influenced N2 fixation sensitivity to water deficit, a dry‐down experiment was carried out by slowly dehydrating plants that were grown in soil under four different Mn nutritions. Plants receiving no Mn had the lowest leaf Mn concentration, 11·9 mg kg ? 1, and had N2 fixation more sensitive to water deficit than plants treated with Mn in which leaf Mn concentration was in the range of 21–33 mg kg ? 1. The highest Mn treatments increased leaf Mn concentration to 37·5 mg kg ? 1 and above but did not delay the decline of ARA with soil drying, although these plants showed a significant increase in ARA under well‐watered conditions.  相似文献   

10.
Effects of deficient (20mmol m?3) and sufficient (1000 mmol m?3) magnesium (Mg) supply and of varied light intensity (100 μmol m?2 s?1 to 580 μmol m?2 s?1) on paraquat-dependent chlorophyll destruction in bean (Phaseolus vulgaris) plants grown in nutrient solution were studied over a 12-d period using leaf discs or intact primary leaves. Treatment of leaf discs with 10mmol m 3 paraquat for 15h caused severe chlorophyll loss, especially with increasing light intensity. This chlorophyll destruction by paraquat was very much higher in Mg-sufficient than Mg-deficient leaves. The occurrence of paraquat resistance in Mg deficient leaves was already apparent after 6d growth in nutrient solution, i.e. before any decrease in chlorophyll or growth by Mg deficiency was evident. Also, following foliar application of paraquat (10–140 mmol m?3) to intact plants, Mg-deficient plants were much more resistant to paraquat, even following longer exposure duration (72 h) and four to 14 times higher paraquat concentrations than those received by Mg sufficient plants. From experiments where exogenous scavengers of superoxide radical (O2.-), hydroxyl radical (OH·) and singlet oxygen (1O2) were applied to leaf discs, it appears that O2.-, and partly, OH· are the main O2 species which contribute to chlorophyll destruction by paraquat. The results demonstrate that Mg-deficient bean plants become highly resistant to O2.--mediated and light-induced paraquat injury. The mode of this paraquat resistance is attributed to well-known stimulative effects of Mg deficiency on O2.- and H2O2 scavenging enzymes and antioxidants.  相似文献   

11.
The photosynthetic rates and various components of photosynthesis including ribulose-1,5-bisphosphate carboxylase (Rubisco; EC 4.1.1.39), chlorophyll (Chl), cytochrome (Cyt) f, and coupling factor 1 (CF1) contents, and sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity were examined in young, fully expanded leaves of rice (Oryza sativa L.) grown hydroponically under two irradiances, namely, 1000 and 350 μmol quanta · m−2 · s−1, at three N concentrations. The light-saturated rate of photosynthesis measured at 1800 μmol · m−2 · s−1 was almost the same for a given leaf N content irrespective of growth irradiance. Similarly, Rubisco content and SPS activity were not different for the same leaf N content between irradiance treatments. In contrast, Chl content was significantly greater in the plants grown at 350 μmol · m−2 · s−1, whereas Cyt f and CF1 contents tended to be slightly smaller. However, these changes were not substantial, as shown by the fact that the light-limited rate of photosynthesis measured at 350 μmol · m−2 · s−1 was the same or only a little higher in the plants grown at 350 μmol · m−2 · s−1 and that CO2-saturated photosynthesis did not differ between irradiance treatments. These results indicate that growth-irradiance-dependent changes in N partitioning in a leaf were far from optimal with respect to N-use efficiency of photosynthesis. In spite of the difference in growth irradiance, the relative growth rate of the whole plant did not differ between the treatments because there was an increase in the leaf area ratio in the low-irradiance-grown plants. This increase was associated with the preferential N-investment in leaf blades and the extremely low accumulation of starch and sucrose in leaf blades and sheaths, allowing a more efficient use of the fixed carbon. Thus, morphogenic responses at the whole-plant level may be more important for plants as an adaptation strategy to light environments than a response of N partitioning at the level of a single leaf. Received: 23 February 1997 / Accepted: 8 May 1997  相似文献   

12.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

13.
Multiannual time series of (palaeo)hydrological information can be reconstructed from the oxygen isotope composition of cellulose (δ18OCel) in biological archives, for example, tree rings, but our ability to temporally resolve information at subannual scale is limited. We capitalized on the short and predictable leaf appearance interval (2.4 d) of a perennial C4 grass (Cleistogenes squarrosa), to assess its potential for providing highly time‐resolved δ18OCel records of vapour pressure deficit (VPD). Plants grown at low (0.63 kPa) or high (1.58 kPa) VPD were swapped between VPD environments and exposed to the new environment for 7 d with simultaneous 13CO2 labelling. Then, leaves were sampled by age/position along individual tillers. Five leaves at different developmental stages were growing simultaneously. The period of most‐active leaf elongation, from 10 to 90% of final length, lasted 6.6 d, and ~80% of all carbon and oxygen incorporation in whole‐leaf cellulose occurred within 7 d. Cellulose deposition stopped at (or shortly after) full leaf expansion. The direction of change, low‐to‐high or high‐to‐low VPD, had no differential effect on new oxygen and carbon incorporation in cellulose. Successive leaves produced by tillers of C. squarrosa provide a δ18OCel record useful for reconstructions of short‐term hydrological dynamics.  相似文献   

14.
Migge  A.  Kahmann  U.  Fock  H.P.  Becker  T.W. 《Photosynthetica》1999,36(1-2):107-116
Air-grown tobacco (Nicotiana tabacum L.) plants were transferred for one week into a low oxygen atmosphere (2 kPa O2, LO) to study both immediate and long-term effects of the suppression of photorespiration on net photosynthetic rate (PN), plant morphology, and chloroplast ultrastructure. The PN and the leaf conductance for CO2 increased upon exposure of attached tobacco leaves to LO. These results may suggest that under LO, external CO2 is used to consume the radiant energy normally utilized in photorespiration by net CO2 assimilation at the expense of an increased rate of transpiration. The increase in the coefficient of nonphotochemical fluorescence quenching indicates that under LO, (surplus) radiant energy is also dissipated as heat. Prolonged LO-treatment of tobacco resulted in a decrease in the PN (measured in air) and in a reduction in the number of starch grains in the chloroplasts. Concomitantly, large lipid globuli appeared in the chloroplasts and the distance between the thylakoids forming the grana decreased. These changes in the ultrastructure of chloroplasts may have contributed to the decline in the PN. The LO-treated plants were considerably smaller than the control plants maintained in air. This appears to have resulted from a reduction in the rate of leaf area expansion at the expense of an increase in the specific mass of the leaves. This long-term response to LO-treatment may allow the plants to conserve water. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
Summary The effects of CO2 enrichment on plant growth, carbon and nitrogen acquisition and resource allocation were investigated in order to examine several hypotheses about the mechanisms that govern dry matter partitioning between shoots and roots. Wild radish plants (Raphanus sativus × raphanistrum) were grown for 25 d under three different atmospheric CO2 concentrations (200 ppm, 330 ppm and 600 ppm) with a stable hydroponic 150 mol 1–1 nitrate supply. Radish biomass accumulation, photosynthetic rate, water use efficiency, nitrogen per unit leaf area, and starch and soluble sugar levels in leaves increased with increasing atmospheric CO2 concentration, whereas specific leaf area and nitrogen concentration of leaves significantly decreased. Despite substantial changes in radish growth, resource acquisition and resource partitioning, the rate at which leaves accumulated starch over the course of the light period and the partitioning of biomass between roots and shoots were not affected by CO2 treatment. This phenomenon was consistent with the hypothesis that root/shoot partitioning is related to the daily rate of starch accumulation by leaves during the photoperiod, but is inconsistent with hypotheses suggesting that root/shoot partitioning is controlled by some aspect of plant C/N balance.  相似文献   

16.
An assessment of the effects of arbuscular mycorrhizal (AM) infection on photosynthesis, carbon (C) allocation, translocation and biomass production of cucumber, grown in sand culture, was made using a previously determined phosphorus (P) supply (0·13 mol m?3 P) which had a significant impact on AM infection. Separation of a direct effect of AM infection from an indirect one due to an enhanced leaf P status was achieved using a comparable non‐mycorrhizal treatment (NAM + P) supplemented with extra P (0·19 mol m?3 P). Total leaf P concentration, specific leaf mass, photosynthetic capacity, and incorporation of 14C into non‐structural carbohydrate pools were dependent on leaf age. Both maximum and ambient photosynthetic rates were significantly higher in the youngest fully expanded leaves from AM and NAM + P plants which also had the higher leaf P concentrations. There were no differences in the total concentrations of starch, sucrose, raffinose or stachyose in young or old leaves among AM, non‐mycorrhizal (NAM) and NAM + P treatments. However, younger leaves of NAM plants showed a shift in 14C‐partitioning from stachyose and raffinose synthesis to starch accumulation. Determination of ADP‐glucose pyrophosphorylase (AGPase), sucrose synthase and sucrose phosphate synthase enzyme activities revealed that only AGPase activity was correlated with the increased incorporation rate of 14C into starch in young leaves of NAM plants. Although there were significant AM‐specific effects on C translocation to the root system, AM plants had similar rate of photosynthesis to NAM + P plants. These results suggest that the increase in photosynthetic rate in leaves of AM‐infected cucumber was due to an increased P status, rather than a consequence of a mycorrhizal ‘sink’ for assimilates.  相似文献   

17.
Effects of C02 enrichment on the rates of net photosynthesis (carbon fixation) and translocation (carbon transport) of tomato leaves were examined on a single mature leaf (seventh basal leaf) of plants grown initially under a light flux density of 40 W m-2 with 350 (control) or 1000 vpm (enriched) CO2, and then exposed for 6 h to various light flux densities (7, 20, 40 and 130 W m-2) or CO2 concentrations (350, 500, 700 and 1000 vpm). When measurements were made in the conditions in which plants were grown, the rates of carbon fixation and carbon transport were 20 and 40% respectively higher in enriched plants than in the control ones. Under conditions different from the growing conditions, the rates of carbon transport in the enriched plants were generally higher than those of the controls with a similar rate of carbon fixation. Leaves grown under a C02 enriched environment have a greater constant supply of mobile leaf assimilate than those under atmospheric C02. The higher efficiency of carbon transport in enriched plants was apparently retained even when the leaf was temporarily exposed to lower levels of light or CO2.  相似文献   

18.
To evaluate daytime and nighttime carbon balance and assimilate export in soybean (Glycine max [L.] Merrill) leaves at different photon flux densities, rates of CO2 exchange, specific leaf weights, and concentrations of sucrose and starch were measured at intervals in leaves of pod-bearing `Amsoy 71' and `Wells II' plants grown in a controlled environment room. Assimilate export was estimated from CO2 exchange and change in specific leaf weight. Total diurnal assimilate export was similar for both cultivars. Large cultivar differences existed, however, in the partitioning of carbon into starch reserves and the relative amounts of assimilate exported during the day and the night. Total amounts of both daytime and nighttime export increased with increasing photon flux density, as did sucrose and starch concentrations, specific leaf weight, and rate of respiratory carbohydrate loss at night. Cultivar differences in nighttime rate of export were more closely related to the differences in amount of assimilate available at the end of the day than to differences in daytime rate of net CO2 assimilation. Daytime rates of export, however, were closely related to daytime rates of net CO2 assimilation within each cultivar. The total amount of starch depleted during the 10-hour night increased as starch concentration at the beginning of the night increased.  相似文献   

19.
Small birch plants (Betula pendula Roth.) were grown from seed for periods of up to 70d in a climate chamber at optimal nutrition and at present (350 μmol mol?1) or elevated (700 μmol mol?1) concentrations of atmospheric CO2. Nutrients were sprayed over the roots in Ingestad-type units. Relative growth rate and net assimilation rate were slightly higher at elevated CO2, whereas leaf area ratio was slightly lower. Smaller leaf area ratio was associated with lower values of specific leaf area. Leaves grown at elevated CO2 had higher starch concentrations (dry weight basis) than leaves grown at present levels of CO2. Biomass allocation showed no change with CO2, and no large effects on stem height, number of side shoots and number of leaves were found. However, the specific root length of fine roots was higher at elevated CO2. No large difference in the response of carbon assimilation to intercellular CO2 concentration (A/Ci curves) were found between CO2 treatments. When measured at the growth environments, the rates of photosynthesis were higher in plants grown at elevated CO2 than in plants grown at present CO2. Water use efficiency of single leaves was higher in the elevated treatment. This was mainly attributable to higher carbon assimilation rate at elevated CO2. The difference in water use efficiency diminished with leaf age. The small treatment difference in relative growth rate was maintained throughout the experiment, which meant that the difference in plant size became progressively greater. Thus, where plant nutrition is sufficient to maintain maximum growth, small birch plants may potentially increase in size more rapidly at elevated CO2.  相似文献   

20.
Experiments were conducted in controlled growth chambers to evaluate how increase in CO2 concentration affected sucrose metabolizing enzymes, especially sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13), as well as carbon metabolism and partitioning in a tropical epiphytic orchid species (Oncidium goldiana). Response of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) to elevated CO2 was determined along with dry mass production, photosynthesis rate, chlorophyll content, total nitrogen and total soluble protein content. After 60 days of growth, there was a 80% and 150% increase in dry mass production in plants grown at 750 and 1 100 μl l?1 CO2, respectively, compared with those grown at ambient CO2 (about 370 μl l?1). A similar increase in photosynthesis rate was detected throughout the growth period when measured under growth CO2 conditions. Concomitantly, there was a decline in leaf Rubisco activity in plants in elevated CO2 after 10 days of growth. Over the growth period, leaf SPS and SS activities were up‐regulated by an average of 20% and 40% for plants grown at 750 and 1100 μl l?1 CO2, respectively. Leaf sucrose content and starch content were significantly higher throughout the growth period in plants grown at elevated CO2 than those at ambient CO2. The partitioning of photosynthetically fixed carbon between sucrose and starch appeared to be unaffected by the 750 μl l?1 CO2 treatment, but it was favored into starch under the 1 100 μl l?1 CO2 condition. The activities of SPS and SS in leaf extracts were closely associated with photosynthetic rates and with partitioning of carbon between starch and sucrose in leaves. The data are consistent with the hypothesis that the up‐regulation of leaf SPS and SS might be an acclimation response to optimize the utilization and export of organic carbon with the increased rate of inorganic‐carbon fixation in elevated CO2 conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号