首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 91 毫秒
1.
DNA双链断裂(DNA double-strand breaks, DSBs)是威胁基因组完整性和细胞存活的最有害的DNA损伤类型。同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)是修复DNA双链断裂的两种主要途径。DSB修复涉及到损伤部位修复蛋白的募集和染色质结构的改变。在DNA双链断裂诱导下,染色质结构的动态变化在时间和空间上受到严格调控,进而对DNA双链断裂修复过程进行精细调节。特定的染色质修饰形成利于修复的染色质状态,有助于DNA双链断裂修复机器的招募、修复途径的选择和DNA损伤检查点的活化;其中修复途径的选择对于基因组稳定性至关重要。修复不当或失败可导致基因组不稳定性,甚至促进肿瘤的发生。本文综述了染色质结构和染色质修饰的动态变化在DSB修复中的重要作用。此外,文章还总结了在癌症治疗中靶向关键染色质调控因子在基因组稳定性维持、肿瘤发生发展以及潜在临床应用价值等方面的进展。  相似文献   

2.
Wang X  Wang H  Iliakis G  Wang Y 《Radiation research》2003,159(3):426-432
After exposure to ionizing radiation, proliferating cells actively slow down progression through the cell cycle through the activation of checkpoints to provide time for repair. Two major complementary DNA double-strand break (DSB) repair pathways exist in mammalian cells, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). The relationship between checkpoint activation and these two types of DNA DSB repair pathways is not clear. Caffeine, as a nonspecific inhibitor of ATM and ATR, abolishes multi-checkpoint responses and sensitizes cells to radiation-induced killing. However, it remains unknown which DNA repair process, NHEJ or HRR, or both, is affected by caffeine-abolished checkpoint responses. We report here that caffeine abolishes the radiation-induced G(2)-phase checkpoint and efficiently sensitizes both NHEJ-proficient and NHEJ-deficient mammalian cells to radiation-induced killing without affecting NHEJ. Our results indicate that caffeine-induced radiosensitization occurs by affecting an NHEJ-independent process, possibly HRR.  相似文献   

3.
In response to DNA damage, cell-cycle checkpoints integrate cell-cycle control with DNA repair. The idea that checkpoint controls are an integral component of normal cell-cycle progression has arisen as a result of studies in Drosophila and mice. In addition, an appreciation that DNA damage arises as a natural consequence of cellular metabolism, including DNA replication itself, has influenced thinking regarding the nature of checkpoint pathways.  相似文献   

4.
Sensing and responding to DNA damage   总被引:26,自引:0,他引:26  
  相似文献   

5.
6.
赵烨  华跃进 《生命科学》2014,(11):1136-1142
耐辐射球菌对于电离辐射等DNA损伤剂具有极强的抗性,能够将同一个基因组中同时产生的高达100个以上的DNA双链断裂在数十小时内高效而精准地进行修复,是研究DNA双链断裂修复机制的重要模式生物。同源重组、非同源末端连接和单链退火途径作为3个主要的修复途径参与了耐辐射球菌基因组DNA双链断裂的修复过程。此外,一系列新发现的重要蛋白质,如Ppr I、Ddr B等对于耐辐射球菌基因组的修复过程同样至关重要。根据本实验室和国内外在这一研究领域近年来的报道,以不同的修复途径为线索,综述该菌DNA双链断裂修复机制的最新研究成果。  相似文献   

7.
Double-strand breaks in genomic DNA (DSB) are potentially lethal lesions which separate parts of chromosome arms from their centromeres. Repair of DSB by recombination can generate mutations and further chromosomal rearrangements, making the regulation of recombination and the choice of recombination pathways of the highest importance. Although knowledge of recombination mechanisms has considerably advanced, the complex interrelationships and regulation of pathways are far from being fully understood. We analyse the different pathways of DSB repair acting in G2/M phase nuclei of irradiated plants, through quantitation of the kinetics of appearance and loss of γ-H2AX foci in Arabidopsis mutants. These analyses show the roles for the four major recombination pathways in post-S-phase DSB repair and that non-homologous recombination pathways constitute the major response. The data suggest a hierarchical organisation of DSB repair in these cells: C-NHEJ acts prior to B-NHEJ which can also inhibit MMEJ. Surprisingly the quadruple ku80 xrcc1 xrcc2 xpf mutant can repair DSB, although with severely altered kinetics. This repair leads to massive genetic instability with more than 50% of mitoses showing anaphase bridges following irradiation. This study thus clarifies the relationships between the different pathways of DSB repair in the living plant and points to the existence of novel DSB repair processes.  相似文献   

8.
The tumor suppressor gene BRCA1 was cloned in 1994 based on its linkage to early-onset breast and ovarian cancer. Although the BRCA1 protein has been implicated in multiple cellular functions, the precise mechanism that determines its tumor suppressor activity is not defined. Currently, the emerging picture is that BRCA1 plays an important role in maintaining genomic integrity by protecting cells from double-strand breaks (DSB) that arise during DNA replication or after DNA damage. The DSB repair pathways available in mammalian cells are homologous recombination and nonhomologous end-joining. BRCA1 function seems to be regulated by specific phosphorylations in response to DNA damage and we will focus this review on the roles played by BRCA1 in DNA repair and cell cycle checkpoints. Finally, we will explore the idea that tumor suppression by BRCA1 depends on its control of DNA DSB repair, resulting in the promotion of error-free and the inhibition of error-prone recombinational repair.  相似文献   

9.
Regulation of the cellular DNA double-strand break response.   总被引:4,自引:0,他引:4  
DNA double-strand breaks occur frequently in cycling cells, and are also induced by exogenous sources, including ionizing radiation. Cells have developed integrated double-strand break response pathways to cope with these lesions, including pathways that initiate DNA repair (either via homologous recombination or nonhomologous end joining), the cell-cycle checkpoints (G1-S, intra-S phase, and G2-M) that provide time for repair, and apoptosis. However, before any of these pathways can be activated, the damage must first be recognized. In this review, we will discuss how the response of mammalian cells to DNA double-strand breaks is regulated, beginning with the activation of ATM, the pinnacle kinase of the double-strand break signalling cascade.  相似文献   

10.
The accurate repair of chromosomal double-strand breaks (DSBs) arising from exposure to exogenous agents, such as ionizing radiation (IR) and radiomimetic drugs is crucial in maintaining genomic integrity, cellular viability and the prevention of tumorigenesis. Eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs. The DNA DSB response is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes, cell-cycle checkpoints and multiple enzymatic activities to repair the broken DNA ends. Sensors and transducers signal to numerous downstream cellular effectors which function primarily by substrate posttranslational modifications including phosphorylation, acetylation, methylation and ubiquitylation. In particular, the past several years have provided important insight into the role of chromatin remodeling and histones-specific modifications to control DNA damage detection, signaling and repair. This review summarizes recently identified factors that influence this complex process and the repair of DNA DSBs in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号