首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Listeria monocytogenes surface protein ActA is an important virulence factor required for listerial intracellular movement by inducing actin polymerization. The only host cell protein known that directly interacts with ActA is the phosphoprotein VASP, which binds to the central proline-rich repeat region of ActA. To identify additional ActA-binding proteins, we applied the yeast two-hybrid system to search for mouse proteins that interact with ActA. A mouse cDNA library was screened for ActA-interacting proteins (AIPs) using ActA from strain L. monocytogen es EGD as bait. Three different AIPs were identified, one of which was identical to the human protein LaXp180 (also called CC1). Binding of LaXp180 to ActA was also demonstrated in vitro using recombinant histidine-tagged LaXp180 and recombinant ActA. Using an anti-LaXp180 antibody and fluorescence microscopy, we showed that LaXp180 co-localizes with a subset of intracellular, ActA-expressing L. monocytogenes but was never detected on intracellularly growing but ActA-deficient mutants. Furthermore, LaXp180 binding to intracellular L. monocytogenes was asymmetrical and mutually exclusive with F-actin polymerization on the bacterial surface. LaXp180 is a putative binding partner of stathmin, a protein involved in signal transduction pathways and in the regulation of microtubule dynamics. Using immunofluorescence, we showed that stathmin co-localizes with intracellular ActA-expressing L. monocytogenes .  相似文献   

2.
《Autophagy》2013,9(8):1220-1221
Autophagy is a pivotal bulk degradation system that eliminates undesirable molecules, damaged organelles, and misfolded protein aggregates in response to diverse stimuli, including infection. Autophagy acts to limit intracellular microbial growth but intracellular pathogens have evolved strategies to subvert host autophagic responses for their survival. We found that Listeria monocytogenes ActA, a surface protein required for actin polymerization and actin-based bacterial motility, plays a pivotal role in evading autophagy, but in a manner independent of bacterial motility. We show that L. monocytogenes exploits the biomimetic property of ActA to camouflage itself with host proteins comprised of Ena/VASP and the Arp2/3 complex, thereby escaping recognition by autophagy (Fig. 1).  相似文献   

3.
The facultative intracellular human pathogenic bacterium Listeria monocytogenes actively recruits host actin to its surface to achieve motility within infected cells. The bacterial surface protein ActA is solely responsible for this process by mimicking fundamental steps of host cell actin dynamics. ActA, a modular protein, contains an N-terminal actin nucleation site and a central proline-rich motif of the 4-fold repeated consensus sequence FPPPP (FP(4)). This motif is specifically recognized by members of the Ena/VASP protein family. These proteins additionally recruit the profilin-G-actin complex increasing the local concentration of G-actin close to the bacterial surface. By using analytical ultracentrifugation, we show that a single ActA molecule can simultaneously interact with four Ena/VASP homology 1 (EVH1) domains. The four FP(4) sites have roughly equivalent affinities with dissociation constants of about 4 microm. Mutational analysis of the FP(4) motifs indicate that the phenylalanine is mandatory for ActA-EVH1 interaction, whereas in each case exchange of the third proline was tolerated. Finally, by using sedimentation equilibrium centrifugation techniques, we demonstrate that ActA is a monomeric protein. By combining these results, we formulate a stoichiometric model to describe how ActA enables Listeria to utilize efficiently resources of the host cell microfilament for its own intracellular motility.  相似文献   

4.
Listeria monocytogenes, a facultative intracellular pathogen, employs actin and other microfilament-associated proteins to move through the host cell cytoplasm. Isogenic mutants of L. monocytogenes lacking the surface-bound ActA polypeptide no longer interact with cytoskeletal elements and are, as a consequence, non-motile (Domann et al., 1992, EMBO J., 11, 1981-1990; Kocks et al., 1992, Cell, 68, 521-531). To investigate the interaction of ActA with the microfilament system in the absence of other bacterial factors, the listerial actA gene was expressed in eukaryotic cells. Immunofluorescence studies revealed that the complete ActA, including its C-terminally located bacterial membrane anchor, colocalized with mitochondria in transfected cells. When targeted to mitochondria, the ActA polypeptide recruited actin and alpha-actinin to these cellular organelles with concomitant reorganization of the microfilament system. Removal of the internal proline-rich repeat region of ActA completely abrogated interaction with cytoskeletal components. Our results identify the ActA polypeptide as a nucleator of the actin cytoskeleton and provide the first insights into the molecular nature of such controlling elements in microfilament organization.  相似文献   

5.
Actin-based propulsion of the bacteria Listeria and Shigella mimics the forward movement of the leading edge of motile cells. While Shigella harnesses the eukaryotic protein N-WASp to stimulate actin polymerization and filament branching through Arp2/3 complex, the Listeria surface protein ActA directly activates Arp2/3 complex by an unknown mechanism. Here we show that the N-terminal domain of ActA binds one actin monomer, in a profilin-like fashion, and Arp2/3 complex and mimics the C-terminal domain of WASp family proteins in catalyzing filament barbed end branching by Arp2/3 complex. No evidence is found for side branching of filaments by ActA-activated Arp2/3 complex. Mutations in the conserved acidic (41)DEWEEE(46) and basic (146)KKRRK(150) regions of ActA affect Arp2/3 binding but not G-actin binding. The motility properties of wild-type and mutated Listeria strains in living cells and in the medium reconstituted from pure proteins confirm the conclusions of biochemical experiments. Filament branching is followed by rapid debranching. Debranching is 3-4-fold faster when Arp2/3 is activated by ActA than by the C-terminal domain of N-WASp. VASP is required for efficient propulsion of ActA-coated beads in the reconstituted motility medium, but it does not affect the rates of barbed end branching/debranching by ActA-activated Arp2/3 nor the capping of filaments. VASP therefore affects another still unidentified biochemical reaction that plays an important role in actin-based movement.  相似文献   

6.
Listeria monocytogenes and Shigella flexneri are two unrelated facultative intracellular pathogens which spread from cell to cell by using a similar mode of intracellular movement based on continuous actin assembly at one pole of the bacterium. This process requires the asymmetrical expression of the ActA surface protein in L. monocytogenes and the lcsA (VirG) surface protein in S. flexneri . ActA and lcsA share no sequence homology. To assess the role of the two proteins in the generation of actin-based movement, we expressed them in the genetic context of two non-actin polymerizing, non-pathogenic bacterial species, Listeria innocua and Escherichia coli . In the absence of any additional bacterial pathogenicity determinants, both proteins induced actin assembly and propulsion of the bacteria in cytoplasmic extracts from Xenopus eggs, as visualized by the formation of characteristic actin comet tails. E. coli expressing lcsA moved about two times faster than Listeria and displayed longer actin tails. However, actin dynamics (actin filament distribution and filament half-lives) were similar in lcsA- and ActA-induced actin tails suggesting that by using unrelated surface molecules, L. monocytogenes and S. flexneri move intracellularly by interacting with the same host cytoskeleton components or by interfering with the same host cell signal transduction pathway.  相似文献   

7.
We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed.  相似文献   

8.
The N-terminal region of the Listeria monocytogenes ActA protein, in conjunction with host cell factors, is sufficient for actin polymerization at the bacterial surface. Previous data suggested that ActA could protect barbed ends from capping proteins. We tested this hypothesis by actin polymerization experiments in the presence of the ActA N-terminal fragment and capping protein. ActA does not protect barbed ends from capping protein. In contrast, this polypeptide prevents PIP(2) from inhibiting the capping activity of capping protein. Gel filtration and tryptophan fluorescence experiments showed that the purified ActA N-terminal fragment binds to PIP(2) and PIP, defining phosphoinositides as novels ligands for this functional domain of ActA. Phosphoinositide binding to the N-terminal region of ActA may induce conformational changes in ActA and/or facilitate binding of other cell components, important for ActA-induced actin polymerization.  相似文献   

9.
The bacterial pathogen, Listeria monocytogenes, grows in the cytoplasm of host cells and spreads intercellularly using a form of actin-based motility mediated by the bacterial protein ActA. Tightly adherent monolayers of MDCK cells that constitutively express GFP-actin were infected with L. monocytogenes, and intercellular spread of bacteria was observed by video microscopy. The probability of formation of membrane-bound protrusions containing bacteria decreased with host cell monolayer age and the establishment of extensive cell-cell contacts. After their extension into a recipient cell, intercellular membrane-bound protrusions underwent a period of bacterium-dependent fitful movement, followed by their collapse into a vacuole and rapid vacuolar lysis. Actin filaments in protrusions exhibited decreased turnover rates compared with bacterially associated cytoplasmic actin comet tails. Recovery of motility in the recipient cell required 1-2 bacterial generations. This delay may be explained by acid-dependent cleavage of ActA by the bacterial metalloprotease, Mpl. Importantly, we have observed that low levels of endocytosis of neighboring MDCK cell surface fragments occurs in the absence of bacteria, implying that intercellular spread of bacteria may exploit an endogenous process of paracytophagy.  相似文献   

10.
The ActA protein of Listeria monocytogenes is a major virulence factor, essential for the recruitment and polymerization of host actin filaments that lead to intracellular motility and cell-to-cell spread of bacteria within the infected host. The expression of actA is tightly regulated and is strongly induced only when L. monocytogenes is within the host cytosol. Intracellular induction of actA expression is mediated through a single promoter element that directs the expression of a messenger RNA with a long (150 bp) 5' untranslated region (UTR). Deletion of the actA+3 to +130 upstream region was found to result in bacterial mutants that were no longer capable of intracellular actin recruitment or cell-to-cell spread, thus indicating that this region is important for actA expression. L. monocytogenes strains that contained smaller deletions (21-23 bp) within the actA upstream region demonstrated a range of actA expression levels that coincided with the amount of bacterial cell-to-cell spread observed within infected monolayers. A correlation appeared to exist between levels of actA expression and the ability of L. monocytogenes to transition from uniform actin accumulation surrounding individual bacteria (actin clouds) to directional assembly and the formation of actin tails. Bacterial mutants containing deletions that most significantly altered the predicted secondary structure of the actA mRNA 5' UTR had the largest reductions in actA expression. These results suggest that the actA 5' UTR is required for maximal ActA synthesis and that a threshold level of ActA synthesis must be achieved to promote the transition from bacteria-associated actin clouds to directional actin assembly and movement.  相似文献   

11.
12.
The Listeria monocytogenes ActA protein mediates actin-based motility by recruiting and stimulating the Arp2/3 complex. In vitro, the actin monomer-binding region of ActA is critical for stimulating Arp2/3-dependent actin nucleation; however, this region is dispensable for actin-based motility in cells. Here, we provide genetic and biochemical evidence that vasodilator-stimulated phosphoprotein (VASP) recruitment by ActA can bypass defects in actin monomer-binding. Furthermore, purified VASP enhances the actin-nucleating activity of wild-type ActA and the Arp2/3 complex while also reducing the frequency of actin branch formation. These data suggest that ActA stimulates the Arp2/3 complex by both VASP-dependent and -independent mechanisms that generate distinct populations of actin filaments in the comet tails of L. monocytogenes. The ability of VASP to contribute to actin filament nucleation and to regulate actin filament architecture highlights the central role of VASP in actin-based motility.  相似文献   

13.
The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes.  相似文献   

14.
Intracellular propulsion of Listeria monocytogenes is the best understood form of motility dependent on actin polymerization. We have used in vitro motility assays of Listeria in platelet and brain extracts to elucidate the function of the focal adhesion proteins of the Ena (Drosophila Enabled)/VASP (vasodilator-stimulated phosphoprotein) family in actin-based motility. Immunodepletion of VASP from platelet extracts and of Evl (Ena/VASP-like protein) from brain extracts of Mena knockout (-/-) mice combined with add-back of recombinant (bacterial or eukaryotic) VASP and Evl show that VASP, Mena, and Evl play interchangeable roles and are required to transform actin polymerization into active movement and propulsive force. The EVH1 (Ena/VASP homology 1) domain of VASP is in slow association-dissociation equilibrium high-affinity binding to the zyxin-homologous, proline-rich region of ActA. VASP also interacts with F-actin via its COOH-terminal EVH2 domain. Hence VASP/ Ena/Evl link the bacterium to the actin tail, which is required for movement. The affinity of VASP for F-actin is controlled by phosphorylation of serine 157 by cAMP-dependent protein kinase. Phospho-VASP binds with high affinity (0.5 x 10(8) M-1); dephospho-VASP binds 40-fold less tightly. We propose a molecular ratchet model for insertional polymerization of actin, within which frequent attachment-detachment of VASP to F-actin allows its sliding along the growing filament.  相似文献   

15.
The Listeria monocytogenes surface protein ActA mediates actin-based motility by interacting with a number of host cytoskeletal components, including Ena/VASP family proteins, which in turn interact with actin and the actin-binding protein profilin. We employed a bidirectional genetic approach to study Ena/VASP's contribution to L. monocytogenes movement and pathogenesis. We generated an ActA allelic series within the defined Ena/VASP-binding sites and introduced the resulting mutant L. monocytogenes into cell lines expressing different Ena/VASP derivatives. Our findings indicate that Ena/VASP proteins contribute to the persistence of both speed and directionality of L. monocytogenes movement. In the absence of the Ena/VASP proline-rich central domain, speed consistency decreased by sixfold. In addition, the Ena/VASP F-actin-binding region increased directionality of bacterial movement by fourfold. We further show that both regions of Ena/VASP enhanced L. monocytogenes cell-to-cell spread to a similar degree, although the Ena/VASP F-actin-binding region did so in an ActA-independent manner. Surprisingly, our ActA allelic series enabled us to uncouple L. monocytogenes speed from directionality although both were controlled by Ena/VASP proteins. Lastly, we showed the pathogenic relevance of these findings by the observation that L. monocytogenes lacking ActA Ena/VASP-binding sites were up to 400-fold less virulent during an adaptive immune response.  相似文献   

16.
Mechanism of polarization of Listeria monocytogenes surface protein ActA   总被引:3,自引:0,他引:3  
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA-RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth.  相似文献   

17.
Autophagy is an important mechanism of innate immune defense. We have recently shown that autophagy components are recruited with septins, a new and increasingly characterized cytoskeleton component, to intracytosolic Shigella that have started to polymerize actin. On the other hand, intracytosolic Listeria avoids autophagy recognition by expressing ActA, a bacterial effector required for actin polymerization. Here, we exploit Shigella and Listeria as intracytosolic tools to characterize different pathways of selective autophagy. We show that the ubiquitin-binding adaptor proteins p62 and NDP52 target Shigella to an autophagy pathway dependent upon septin and actin. In contrast, p62 or NDP52 targets the Listeria ActA mutant to an autophagy pathway independent of septin or actin. TNF-α, a host cytokine produced upon bacterial infection, stimulates p62-mediated autophagic activity and restricts the survival of Shigella and the Listeria ActA mutant. These data provide a new molecular framework to understand the emerging complexity of autophagy and its ability to achieve specific clearance of intracytosolic bacteria.  相似文献   

18.
The bacterial pathogen Listeria monocytogenes displays the remarkable ability to reorganize the actin cytoskeleton within host cells as a means for promoting cell-to-cell transfer of the pathogen, in a manner that evades humoral immunity. In a series of events commencing with the biosynthesis of the bacterial surface protein ActA, host cell actin and many actin-associated protein self-assemble to from rocket-tail structures that continually grow at sites proximal to the bacterium and depolymerize distally. Widespread interest in the underlying molecular mechanism of Listeria locomotion stems from the likelihood that the dynamic remodeling of the host cell actin cytoskeleton at the cell's leading edge involves mechanistically analogous interactions. Recent advances in our understanding of these fundamental cytoskeletal rearrangements have been achieved through a clearer recognition of the central role of oligo-proline sequence repeats present in ActA, and these findings provide a basis for inferring the role of analogous host cell proteins in the force-producing and position-securing steps in pseudopod and lamellipod formation at the peripheral membrane.  相似文献   

19.
The ActA protein of the intracellular pathogen Listeria monocytogenes induces a dramatic reorganization of the actin-based cytoskeleton. Two profilin binding proteins, VASP and Mena, are the only cellular proteins known so far to bind directly to ActA. This interaction is mediated by a conserved module, the EVH1 domain. We identify E/DFPPPPXD/E, a motif repeated 4-fold within the primary sequence of ActA, as the core of the consensus ligand for EVH1 domains. This motif is also present and functional in at least two cellular proteins, zyxin and vinculin, which are in this respect major eukaryotic analogs of ActA. The functional importance of the novel protein-protein interaction was examined in the Listeria system. Removal of EVH1 binding sites on ActA reduces bacterial motility and strongly attenuates Listeria virulence. Taken together we demonstrate that ActA-EVH1 binding is a paradigm for a novel class of eukaryotic protein-protein interactions involving a proline-rich ligand that is clearly different from those described for SH3 and WW/WWP domains. This class of interactions appears to be of general importance for processes dependent on rapid actin remodeling.  相似文献   

20.
Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin‐based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin‐based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time‐lapse microscopy using green fluorescent protein‐LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin‐based motility moved away from LC3‐positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin‐based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号