首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary   In New South Wales, alien plants pose the second greatest threat to biodiversity behind land clearing and habitat loss, yet current weed management does not always address the biodiversity at risk or put in place mechanisms to ensure their recovery. The problem arises in part from an assumption that control programmes which focus only on the weed will result in a biodiversity benefit, rather than acknowledging the need for an assessment of the biodiversity at risk and subsequent incorporation of such information into management strategies. The New South Wales Threatened Species Conservation Act 1995 (TSC Act) has been used as a tool to integrate weed control and biodiversity management through the listing of weeds as key threatening processes and the development and implementation of Threat Abatement Plans (TAPs). Through this process, weed management is forced to focus on actual biodiversity conservation outcomes by directing control to areas where the likelihood of a positive biodiversity response is maximized. Bitou Bush ( Chrysanthemoides monilifera ssp. rotundata ) was the first weed species listed under the TSC Act as a key threatening process and to have a TAP prepared. Implementation of the Bitou Bush TAP is now potentially assisting the recovery of over 150 native plant species and 24 ecological communities at more than 160 sites. The TAP process is now being used for Lantana ( Lantana camara ) nationally and for all widespread weed species that threaten biodiversity within each of the 13 Catchment Management Authorities across New South Wales. By focusing the objectives of weed control on biodiversity protection and recovery, and ensuring that sites throughout the distribution of the weed are prioritized, threat reduction and conservation outcomes are more likely to occur at a landscape scale.  相似文献   

2.
The impact of an exotic species in natural systems may be dependent not only on invader attributes but also on characteristics of the invaded community. We examined impacts of the invader bitou bush, Chrysanthemoides monilifera ssp. rotundata , in fore and hind dune communities of coastal New South Wales, Australia. We compared invader impacts on vegetation structure, richness of both native and exotic growth forms and community variability in fore and hind dunes. We found that impacts of bitou invasion were context specific: in fore dune shrublands, functionally distinct graminoid, herb and climber rather than shrub growth forms had significantly reduced species richness following bitou invasion. However, in forested hind dunes, the functionally similar native shrub growth form had significantly reduced species richness following bitou invasion. Density of vegetation structure increased at the shrub level in both fore and hind dune invaded communities compared with non-invaded communities. Fore dune ground-level vegetation density declined at invaded sites compared with non-invaded sites, reflecting significant reductions in herb and graminoid species richness. Hind dune canopy-level vegetation density was reduced at invaded compared with non-invaded sites. Bitou bush invasion also affected fore dune community variability with significant increases in variability of species abundances observed in invaded compared with non-invaded sites. In contrast, variability among all hind dune sites was similar. The results suggest that effects of bitou bush invasion are mediated by the vegetation community. When bitou bush becomes abundant, community structure and functioning may be compromised.  相似文献   

3.
Poorly studied species are potentially under-prioritised by conservation programmes due to knowledge gaps presenting barriers to informing effective management strategies. The Botany Bay Bearded Greenhood, Pterostylis sp. Botany Bay, is an example of a poorly studied plant that is listed as endangered under both Commonwealth and New South Wales legislation. This study reports on archival surveys from 1998 to 2005 conducted at up to eight sites known to contain the Botany Bay Bearded Greenhood and follow-up surveys in 2022. The archival surveys found that the total population count ranged from 83 to 341 individuals. Mean numbers (± standard error) of seedlings, flowering individuals and individuals exhibiting capsule development recorded in the population were 43 ± 14, 33 ± 9 and 2 ± 1 respectively. The 2022 surveys did not detect the species. An area of potential habitat was derived from records in biodiversity databases, which determined a total historical extent of 1.38 ha restricted to the Kurnell Peninsula in Sydney, New South Wales. The priority next step is to gather contemporary data to confirm whether the Botany Bay Bearded Greenhood remains extant, which can be done by applied researchers, students, landholders and land managers, botanical practitioners and/or volunteers. For optimal species detection, we recommend undertaking formal surveys or opportunistic searches in historically known sites and replicating detection efforts across July–September periods to exploit seasonal flowering.  相似文献   

4.
Native and exotic fishes were collected from 29 sites across coastal and inland New South Wales, Queensland and Victoria, using a range of techniques, to infer the distribution of Bothriocephalus acheilognathi (Cestoda: Pseudophyllidea) and the host species in which it occurs. The distribution of B. acheilognathi was determined by that of its principal host, carp, Cyprinus carpio; it did not occur at sites where carp were not present. The parasite was recorded from all native fish species where the sample size exceeded 30 and which were collected sympatrically with carp: Hypseleotris klunzingeri, Hypseleotris sp. 4, Hypseleotris sp. 5, Phylipnodon grandiceps and Retropinna semoni. Bothriocephalus acheilognathi was also recorded from the exotic fishes Gambusia holbrooki and Carassius auratus. Hypseleotris sp. 4, Hypseleotris sp. 5, P. grandiceps, R. semoni and C. auratus are new host records. The parasite was not recorded from any sites in coastal drainages. The only carp population examined from a coastal drainage (Albert River, south-east Queensland) was also free of infection; those fish had a parasite fauna distinct from that of carp in inland drainages and may represent a separate introduction event. Bothriocephalus acheilognathi has apparently spread along with its carp hosts and is so far restricted to the Murray-Darling Basin. The low host specificity of this parasite is cause for concern given the threatened or endangered nature of some Australian native freshwater fish species. A revised list of definitive hosts of B. acheilognathiis presented.  相似文献   

5.
Recovering biodiversity is a common goal during restoration; however, for many ecosystems, it is not well understood how restoration influences species diversity across space and time. I examined understory species diversity and composition after woody encroachment removal in a large-scale savanna restoration experiment in central Iowa, United States. Over a 4-year time series, restoration had profound effects across space and time, increasing richness at local and site-level scales. Restoration sites had increased α (within sample) Simpson's diversity and α and γ (site level) species richness relative to control sites, although γ and β (among sample) Simpson's diversity, β richness, and α species evenness were not affected. Changes in richness were driven by graminoids at the α and γ scales and woody species (and some evidence for forbs) at the α scale. Interestingly, indicator species analysis revealed that at least some species from all functional groups were promoted by restoration, although no species were significant indicators of pre-treatment or control sites. Both savanna and nonsavanna species were indicators of restored sites. Restoration promoted exotic species at both scales, although species with spring phenologies were unaffected. Woody encroachment removal may be a means to promote species establishment in savannas; however, in this study, it resulted in establishment and proliferation of native and exotic and savanna and nonsavanna species. Future work might consider reintroduction of key savanna species to supplement those that have established. Work like this demonstrates the utility of restoration experiments for conducting research on large- and multiscale processes, such as species diversity.  相似文献   

6.
As conservation reserves expand, the likelihood that they will capture areas degraded by previous land use increases. Ecological restoration of such areas will therefore play an increasing role in biodiversity conservation. On the New South Wales North Coast, recent expansion in the conservation estate has captured over 300 softwood and hardwood plantations, many with understoreys dominated by exotic weeds. Here we present an overview of the practices we have adopted in managing flooded gum (Eucalyptus grandis) plantations infested with lantana (Lantana camara) to enhance their biodiversity value. Experiments designed to overcome barriers limiting regeneration of native forest in conjunction with measurement of soil and plant responses yielded insights into the management of former timber plantations for biodiversity. Canonical Correspondence Analysis indicated that the level of canopy retention (or logging intensity) within sites consistently explained the greatest amount of variation in plant community composition (32–38% post-treatment). Thinning and burning stimulated regeneration of native species. Retained canopy cover was proportional to the richness or abundance of native woody shrubs, understorey trees and native perennial herbs, indicating that management intensity can be varied to promote a range of conservation values. A state-and-transition model summarising purported management actions and likely outcomes for these plantations is presented. This is the first time plantations have been managed solely for biodiversity. Logging income means that plantation restoration can be cost-neutral, and the positive influence of a cover crop of trees means that plantation management may generally be manipulated to promote biodiversity conservation.  相似文献   

7.
  1. Economic pests jeopardize agricultural production worldwide. Classical biological control, comprising the import of exotic natural enemies to control target pest populations, has a successful history in many countries. However, little is known about how these natural enemies contribute to the suppression of pests that are yet to arrive. Biotic resistance theory, though, posits that communities resist species invasions as a result of natural enemies.
  2. We assessed the potential of the resident exotic parasitoid wasp fauna in New Zealand (intentionally‐introduced biological control agents and unintentionally‐introduced species) to provide biotic resistance against possible future pests. A dataset was generated containing resident exotic parasitoid species (Ichneumonoidea: Braconidae; Ichneumonidae) in New Zealand, as well as their known global host ranges and the pest status of host species, to infer the potential for biotic resistance.
  3. The known exotic ichneumonoid fauna in New Zealand comprises 65 species. These species associate with 107 host species in New Zealand, of which 54 species are pests. However, the current exotic species could potentially suppress 442 pest species not yet occurring in New Zealand.
  4. This approach could be used to inform pest management programmes worldwide. Future research should consider how biotic resistance from the established parasitoid fauna can be used to inform specific decisions with respect to classical biological control.
  相似文献   

8.
9.
生物入侵对鸟类的生态影响   总被引:1,自引:0,他引:1  
生物入侵是全球生物多样性面临的最主要威胁之一, 入侵种在改变入侵地环境的同时也使当地的生物受到极大影响。鸟类在生态系统中处于较高的营养级, 生态系统中任何一个环节的变化都可能对鸟类造成一定的影响。本文回顾了哺乳动物、鸟类、无脊椎动物和植物等不同生物类群的入侵对本地鸟类生态影响方面的研究进展。外来生物对鸟类的影响主要表现在以下几方面: (1)外来哺乳动物对成鸟、幼鸟或鸟卵的捕食作用; (2)外来鸟类与本地鸟类竞争栖息地和食物资源, 与当地的近缘种杂交而造成基因流失; (3)外来无脊椎动物改变本地鸟类的栖息环境和食物状况, 甚至直接捕食本地鸟类; (4)外来植物入侵改变入侵地的植物群落组成和结构, 造成本地鸟类的栖息地丧失或破碎化, 并通过改变入侵地生态系统的食物链结构而对高营养级的鸟类产生影响。最后, 作者还提出了该领域有待解决的问题和今后可能的研究方向。  相似文献   

10.
Mechanistic insights from invasion biology indicate that propagule pressure of exotic species and native community structure can independently influence establishment success. The role of native community connectivity via species dispersal and its potential interaction with propagule pressure on invasion success in metacommunities, however, remains unknown. Native community connectivity may increase biotic resistance to invasion by enhancing species richness and evenness, but the effects could depend upon the level of propagule pressure. In this study, a mesocosm experiment was used to evaluate the independent and combined effects of exotic propagule pressure and native community connectivity on invasion success. The effects of three levels of exotic Daphnia lumholtzi propagule pressure on establishment success, community structure and ecosystem attributes were evaluated in native zooplankton communities connected by species dispersal versus unconnected communities, and relative to a control without native species. Establishment of the exotic species exhibited a propagule dose‐dependent relationship with high levels of propagule pressure resulting in the greatest establishment success. Native community connectivity, however, effectively reduced establishment at the low level of propagule pressure and further augmented native species richness across propagule pressure treatments. Propagule pressure largely determined the negative impacts of the exotic species on native species richness, native biomass and edible producer biomass. The results highlight that native community connectivity can reduce invasion success at a low propagule dose and decrease extinction risk of native competitors, but high propagule pressure can overcome connectivity‐mediated biotic resistance to influence establishment and impact of the exotic species. Together, the results emphasize the importance of the interaction of propagule pressure and community connectivity as a regulator of invasion success, and argue for the maintenance of metacommunity connectivity to confer invasion resistance.  相似文献   

11.
The once extensive native forests of New Zealand’s central North Island are heavily fragmented, and the scattered remnants are now surrounded by a matrix of exotic pastoral grasslands and Pinus radiata plantation forests. The importance of these exotic habitats for native biodiversity is poorly understood. This study examines the utilisation of exotic plantation forests by native beetles in a heavily modified landscape. The diversity of selected beetle taxa was compared at multiple distances across edge gradients between each of the six possible combinations of adjacent pastoral, plantation, clearfell and native forest land-use types. Estimated species richness (Michaelis–Menten) was greater in production habitats than native forest; however this was largely due to the absence of exotic species in native forest. Beetle relative abundance was highest in clearfell-harvested areas, mainly due to colonisation by open-habitat, disturbance-adapted species. More importantly, though, of all the non-native habitats sampled, beetle species composition in mature P. radiata was most similar to native forest. Understanding the influence of key environmental factors and stand level management is important for enhancing biodiversity values within the landscape. Native habitat proximity was the most significant environmental correlate of beetle community composition, highlighting the importance of retaining native remnants within plantation landscapes. The proportion of exotic beetles was consistently low in mature plantation stands, however it increased in pasture sites at increasing distances from native forest. These results suggest that exotic plantation forests may provide important alternative habitat for native forest beetles in landscapes with a low proportion of native forest cover.  相似文献   

12.
Exotic annual grasses have been introduced into many semi-arid ecosystems worldwide, often to the detriment of native plant communities. The accumulation of litter from these grasses (i.e. residual dry biomass) has been demonstrated to negatively impact native plant communities and promote positive feedbacks to exotic grass persistence. More targeted experiments are needed, however, to determine the relative impact of exotic grass litter on plant community structure across local environmental gradients. We experimentally added exotic grass litter to annual forb-dominated open woodland communities positioned along natural canopy cover gradients in southwest Western Australia. These communities are an important component of this region’s plant biodiversity hotspot and are documented to be under threat from exotic annual grasses. After a one-year treatment period, we measured the effects of exotic grass litter, soil properties, and canopy cover on native and exotic species richness and abundance, as well as common species’ biomass and abundances. Plant community structure was more strongly influenced by soil properties and canopy cover than by grass litter. Total plant abundances per plot, however, were significantly lower in litter addition plots than control plots, a trend driven by native species. Exotic grass litter was also associated with lower abundances of one very common native species: Waitzia acuminata. Our results suggest that exotic grass litter limits the establishment of some native species in this system. Over multiple years, these subtle impacts may contribute substantially to the successful advancement of exotic species into this system, particularly in certain microenvironments.  相似文献   

13.
Over the past few decades, land-use changes through conversion of global forest cover to exotic plantations is contributing to both habitat and biodiversity loss and species extinctions. To better understand human influences on ecosystem, we use diet composition from introduced Rainbow Trout Oncorhynchus mykiss as indicator of potential changes in the composition of stream-macroinvertebrates due to land use changes from native to exotic vegetation (eucalyptus plantations) in southern Chile. Water quality variables, aquatic macroinvertebrates and Rainbow Trout diet were studied in 12 sites from mountain streams located in two watersheds including one dominated by native riparian vegetation and the other dominated by exotic vegetation. As expected, richness and abundance of macroinvertebrates were clearly higher at sites in native forest than in those with exotic vegetation. Collector-gatherer was the most abundant functional feeding group, but there was no statistical difference in the functional composition between the two watersheds. Differences in in-stream macroinvertebrate availability was more higher correlated with changes in Rainbow Trout diets. Specifically, taxa consumed from the watershed dominated by native forests was higher than from the watershed with exotic vegetation. Additional environmental variables showed statistical differences between watersheds. The exotic vegetation sites had the highest concentrations of dissolved solids, suspended solids, nitrates, chlorides and sulphates. Our findings show that macroinvertebrate assemblage structure and trout diets can be altered by changes in riparian vegetation. The absence of specific macroinvertebrate taxa in streams with exotic vegetation was captured by the composition of trout diets. This suggest that Rainbow Trout diets can be a good biological indicator of land use practices and thus, diet can be used as a rapid and effective tool for evaluate environmental quality. Our findings provide insights about the design of aquatic monitoring programmes to improve detection of anthropogenic impacts in streams in South America and elsewhere.  相似文献   

14.
  • 1 The successful introduction of the red fox Vulpes vulpes into Australia in the 1870s has had dramatic and deleterious impacts on both native fauna and agricultural production. Historical accounts detail how the arrival of foxes in many areas coincided with the local demise of native fauna. Recent analyses suggest that native fauna can be successfully reintroduced to their former ranges only if foxes have been controlled, and several replicated removal experiments have confirmed that foxes are the major agents of extirpation of native fauna. Predation is the primary cause of losses, but competition and transmission of disease may be important for some species.
  • 2 In agricultural landscapes, fox predation on lambs can cause losses of 1–30%; variation is due to flock size, health and management, as well as differences in the timing and duration of lambing and the density of foxes.
  • 3 Fox control measures include trapping, shooting, den fumigation and exclusion fencing; baiting using the toxin 1080 is the most commonly employed method. Depending on the baiting strategy, habitat and area covered, baiting can reduce fox activity by 50–97%. We review patterns of baiting in a large sheep‐grazing region in central New South Wales, and propose guidelines to increase landholder awareness of baiting strategies, to concentrate and coordinate bait use, and to maximize the cost‐effectiveness of baiting programs.
  • 4 The variable reduction in fox density within the baited area, together with the ability of the fox to recolonize rapidly, suggest that current baiting practices in eastern Australia are often ineffective, and that reforms are required. These might include increasing landholder awareness and involvement in group control programs, and the use of more efficient broadscale techniques, such as aerial baiting.
  相似文献   

15.
The Pilliga forest in northern inland New South Wales, Australia, is one of the largest surviving remnants of native forest on the western slopes of the Great Dividing Range. The Pilliga landscape is a challenging environment for molluscs, dominated by dry sclerophyll forest and with limited and largely ephemeral aquatic habitats. A field survey of the area in 2006–2012 identified a surprisingly rich and relatively intact aquatic native molluscan fauna with five species of bivalves in three families and nine species of freshwater gastropods (four families), including some rare species and range extensions. The native land snail fauna comprised 18 species (six families), including an unusually rich pupillid fauna with nine species. Some range extensions are recorded and some species are narrow-range endemics. The distributions of many aquatic and terrestrial species were correlated with geology or soil type. Introduced molluscs were predominantly found in anthropogenic habitats and include two freshwater gastropods (two families) and nine terrestrial snails and slugs (eight families). This study provides insight into the original molluscan fauna of the western slopes prior to landscape-scale agricultural development and provides a benchmark for future reference.  相似文献   

16.
Given the abundance of non-native species invading wildland habitats, managers need to employ informed triage to focus control efforts on weeds with the greatest potential for negative impacts. Our objective here was to determine the level of threat Sahara mustard, Brassica tournefortii, represents to meeting regional goals for protecting biodiversity. Sahara mustard has spread throughout much of the Mojave and lower Sonoran Deserts. It has occurred in southern California’s Coachella Valley for nearly 80 years, punctuated by years of extremely high abundance following high rainfall. In those years the mustard has clear negative impacts on the native flora. Using mustard removal experiments we identified reductions in native plant reproduction, shifting composition increasingly toward Sahara mustard while decreasing the fraction of native species. High between-year variance in precipitation may be a key to maintaining biodiversity as the mustard is less abundant in drier years. Sahara mustard impacts to the native fauna were much less evident. Of the animal species evaluated, only the Coachella Valley fringe-toed lizard, Uma inornata, demonstrated a negative response to mustard abundance; however the impacts were short-lived, lasting no more than a year after the mustard’s dominance waned. Without control measures the long-term impacts to desert biodiversity may rest on the changing climate. Wetter conditions or increased periodicity of high rainfall years will favor Sahara mustard and result in reduced biodiversity, especially of native annual plants. Drier conditions will keep the mustard from becoming dominant but may have other negative consequences on the native flora and fauna.  相似文献   

17.
Expansion of the nature conservation estate in northeastern New South Wales, Australia, has captured weed‐infested timber plantations amid a mosaic of high conservation value lands. We adopted a state‐and‐transition approach to test the hypothesis that restoration barriers restrict the natural regeneration of native species in Eucalyptus grandis plantations infested by Lantana camara in Bongil Bongil National Park, New South Wales. Plantation tree thinning and weed control were applied in factorial combination at three sites (totaling to 4.5 ha). Topsoil chemistry responses to these interventions were attributable to the “ash bed” effect, with temporary increases in topsoil pHW and nitrate, particularly where canopy reduction was greatest. Other soil changes were minor, indicating that thinning and burning did not risk soil degradation. Plant species richness and functional group representation in the regenerating understorey were improved by the interventions. Regeneration of native potential canopy trees, understorey trees, shrubs and woody climbers, and perennial forbs all increased with canopy retention. Grass cover dominated the regeneration where canopy cover was less than 50%. In the absence of weed control, the cover of introduced shrubs increased with reduction in canopy cover, as did the rate of understorey regeneration generally. These responses indicate that thinning and weed control can reinstate succession, leading to structurally and compositionally diverse forest. Given the abundance of native woody regeneration under retained canopy, the lantana understorey was more important in inhibiting native regeneration. The experimental approach will promote efficient use of resources across the remaining 200 ha of low conservation value plantations in this national park.  相似文献   

18.
Abstract  Caliothrips fasciatus is native to the USA and western Mexico and overwintering adults are regular contaminants in the 'navel' of navel oranges exported from California, USA to Australia, New Zealand and elsewhere. Due to the long history of regular interceptions of C. fasciatus in Australia, a survey for this thrips was undertaken around airports, seaports, public recreational parks and major agricultural areas in the states of Queensland, New South Wales, Victoria, South Australia and Western Australia to determine whether C. fasciatus has successfully invaded Australia. Host plants that are known to support populations of C. fasciatus , such as various annual and perennial agricultural crops, urban ornamentals and weeds along with native Australian flora, were sampled for this thrips. A total of 4675 thrips specimens encompassing at least 76 species from a minimum of 47 genera, and three families were collected from at least 159 plant species in 67 families. Caliothrips striatopterus was collected in Queensland, but the target species, C. fasciatus , was not found anywhere. An undescribed genus of Thripidae, Panchaetothripinae, was collected from ornamental Grevillea (var. Robyn Gordon) at Perth (Western Australia) Domestic Airport, and is considered to be a native Australian species. This survey has provided valuable information on the background diversity of thrips species associated with various native and exotic plant species around major ports of entry and exit for four of five states in Australia. We suggest that the major reason C. fasciatus has not established in Australia is due to high adult mortality in navels that are kept at low storage temperatures (2.78°C) during an 18- to 24-day transit period from California to Australia.  相似文献   

19.
利用传统生物防治控制外来杂草的入侵   总被引:34,自引:3,他引:31  
马瑞燕  王韧  丁建清 《生态学报》2003,23(12):2677-2688
随着国际贸易的日益频繁,外来有害植物入侵,严重威胁我国的自然环境和生物多样性。利用从原产地引入食性较专一的天敌来控制外来杂草是杂草生物防治的主要方式之一,有保护环境一劳永逸的效果。简要介绍了国际生物防治概况,统计表明全世界至少有133种目标杂草进行生物防治,主要分布在菊科、仙人掌科和含羞草科,63科369种无脊椎动物和真菌作为杂草生物防治的天敌,利用最多的天敌是鞘翅目象甲科和叶甲科昆虫,其中大多数项目是治理外来杂草的。杂草生物防治最活跃的国家依次为美国、澳大利亚、南非、加拿大和新西兰。重点论述了利用传统生物防治方法防治外来杂草的经典项目、国内外研究概况,以及目前面临的问题和应用前景。我国杂草生物防治起步晚,传统杂草生防的目标杂草有4种,紫茎泽兰、空心莲子草、豚草和水葫芦,其中,空心莲子草的生物防治获得成功。共引进天敌14种,输出天敌23种,与世界上生物防治先进的国家比尚有距离。中国应充分借鉴国际成功经验,对外来杂草开展生物防治。中国的生物多样性在世界上占有十分独特的地位,将在生物多样性保护中发挥重要作用。  相似文献   

20.
Abstract  The braconid parasitoid Microctonus aethiopoides Loan has been released in Australia and New Zealand for biological control of the lucerne pest Sitona discoideus Gyllenhal. In New Zealand, the parasitoid attacks a number of endemic weevil species. A survey of Curculionoidea found in and near lucerne in south-eastern Australia was carried out to investigate whether similar non-target parasitism was occurring, and to relate this to levels of parasitism found in the target host, S. discoideus . Some of the original M. aethiopoides release sites were particularly targeted in the survey of 25 sites in Victoria, New South Wales and South Australia. Almost 2500 weevils were collected, of which over 90% were S. discoideus , with the remaining 197 other weevils comprising 29 species found at 15 of the 25 sites. Parasitism of S. discoideus by M. aethiopoides occurred at 12 lucerne sites, with levels ranging from 0 to 25%. A single incidence of parasitism of a species of an Australian native weevil Prosayleus sp. by M. aethiopoides was recorded. No parasitism of any other weevil species was observed. The taxonomic affinities between Sitona and native Australian and New Zealand weevils are discussed, concluding that non-target host range in M. aethiopoides may be determined more by ecological factors than by taxonomic affinities among its hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号