首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 113 毫秒
1.
The relative importance of thermal interference and competition for below-ground resources in the inhibition of tree seedling growth by grass was determined under field conditions. Snow gum (Eucalyptus pauciflora) seedlings were grown in bare soil or soil covered with either live grass or straw. Covering soil with straw produced thermal conditions in soil and air that were indistinguishable from those associated with live grass. In contrast, seedlings grown in bare soil experienced more rapid increase in soil temperatures during late winter and spring, less frequent and less severe frosts, and temperature maxima that more closely followed those of the atmosphere than seedlings growing in live grass or straw. After 1 year, seedlings in bare soil had four times the biomass of those grown in grass or straw. Inhibition of seedling growth by grass was attributed to alteration of the thermal environment which caused (1) seedlings to have a short growing season largely restricted to summer, (2) temporal separation in competition for resources with consumption of below-ground resources by grass in spring reducing availability of resources to support tree seedling growth in early summer, and (3) seedlings to be more subject to stress from temperature extremes. These results show that thermal interference plays a major role in interactions between plants.  相似文献   

2.
 This study examines the effect of different soil temperatures on root growth in seedlings of Eucalyptus pauciflora Sieber ex Sprengel subsp. pauciflora and Eucalyptus nitens (Deane & Maiden) Maiden. Seedlings were grown in a glasshouse in pots containing soil. Pots were held in water baths maintained at 3, 7 or 13°C, whilst shoots were exposed to ambient glasshouse temperatures. The experiments were designed to separate direct effects of soil temperature from effects due to differences in seedling size. In the first experiment, seedlings were grown to constant height (25 cm for both species), in the second to constant time (100 days for E. pauciflora and 64 days for E. nitens) and in the third experiment seedlings were transferred between soil temperatures. The rate of growth of both species increased with increasing soil temperature. E. nitens grew faster than E. pauciflora at 7 and 13°C, but E. pauciflora grew faster than E. nitens at 3°C. The rate of browning of roots increased with decreasing soil temperature and at a faster rate in E. nitens than E. pauciflora. Root length was highly correlated to root mass within diameter and colour classes (r2 > 0.7). However, brown roots were heavier than white roots. Consequently, changes in root mass did not reflect changes in root length when the proportion of brown to white root also changed. For example, at a constant height of 25 cm at 3°C, E. nitens had greater root mass but lesser root length than E. pauciflora. E. pauciflora at 3°C grew faster, and had more root length and less brown roots than E. nitens. This supports the argument that E. pauciflora is better adapted than E. nitens to survive and grow at lower soil temperatures. Received: 16 December 1996 / Accepted: 2 April 1997  相似文献   

3.
In abandoned or extensively managed grasslands, the mechanisms involved in pioneer tree species success are not fully explained. Resource competition among plants and microclimate modifications have been emphasised as possible mechanisms to explain variation of survivorship and growth. In this study, we evaluated a number of mechanisms that may lead to successful survival and growth of seedlings of a pioneer tree species (Pinus sylvestris) in a grass-dominated grassland. Three-year-old Scots pines were planted in an extensively managed grassland of the French Massif Central and for 2 years were either maintained in bare soil or subjected to aerial and below-ground interactions induced by grass vegetation. Soil temperatures were slightly higher in bare soil than under the grass vegetation, but not to an extent explaining pine growth differences. The tall grass canopy reduced light transmission by 77% at ground level and by 20% in the upper part of Scots pine seedlings. Grass vegetation presence also significantly decreased soil volumetric water content (Hv) and soil nitrate in spring and in summer. In these conditions, the average tree height was reduced by 5% compared to trees grown in bare soil, and plant biomass was reduced by 85%. Scots pine intrinsic water-use efficiency (A/g), measured by leaf gas-exchange, increased when Hv decreased owing to a rapid decline of stomatal conductance (g). This result was also confirmed by δ 13C analyses of needles. A summer 15N labelling of seedlings and grass vegetation confirmed the higher NO3 capture capacity of grass vegetation in comparison with Scots pine seedlings. Our results provide evidence that the seedlings' success was linked to tolerance of below-ground resource depletion (particularly water) induced by grass vegetation based on morphological and physiological plasticity as well as to resource conservation.  相似文献   

4.
Seedlings of Eucalyptus pauciflora, were grown in open-top chambers fumigated with ambient and elevated [CO2], and were divided into two populations using 10% light transmittance screens. The aim was to separate the effects of timing of light interception, temperature and [CO2] on plant growth. The orientation of the screens exposed plants to a similar total irradiance, but incident during either cold mornings (east-facing) or warm afternoons (west-facing). Following the first autumn freezing event elevated CO2-grown plants had 10 times more necrotic leaf area than ambient CO2 plants. West-facing plants had significantly greater (25% more) leaf damage and lower photochemical efficiency (Fv/Fm) in comparison with east-facing plants. Following a late spring freezing event east-facing elevated CO2 plants suffered a greater sustained loss in Fv/Fm than west-facing elevated CO2- and ambient CO2-grown plants. Stomatal conductance was lower under elevated CO2 than ambient CO2 except during late spring, with the highest leaf temperatures occurring in west-facing plants under elevated CO2. These higher leaf temperatures apparently interfered with cold acclimation thereby enhancing frost damage and reducing the ability to take advantage of optimal growing conditions under elevated CO2.  相似文献   

5.
Although plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below ?8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist.  相似文献   

6.
Question: Environmental limitations on carbon acquisition and use can impact successful establishment and restrict a species range, such as for trees at timberline. How do ecophysiological properties associated with carbon uptake and allocation change along an elevation gradient for adult compared to seedling conifers in a timberline ecotone? Location: Teton Range in the Rocky Mountains, Wyoming, USA Methods: Photochemical efficiency (Fv/Fm), specific leaf area (SLA) and foliar nonstructural carbohydrates (NSC) were compared along an elevation gradient (2200‐3050 m) among two age classes (seedling and adult) and species (Abies lasiocarpa and Pseudotsuga menziesii) at timberline during mid‐summer. Results: F v/Fm values were relatively high in both seedlings and adults across the elevation gradient, with the exception of a low Fv/Fm for seedlings in the site having the lowest soil temperatures. SLA was surprisingly constant within each age class and species across the timberline ecotone. Foliar NSCs did not increase or decrease consistently with elevation in either age class. Nonetheless, NSCs were highly variable among sites, but only in seedlings and not in adults. Conclusions: Elevation effects on these indicators of the efficiency of interception and use of sunlight in the timberline ecotone were minimal during the optimum period of the growing season. However, establishing seedlings had a tendency to exhibit greater responses to the timberline environment, particularly in their allocation of photosynthate to NSC, which may be a constraint to tree establishment at high elevations.  相似文献   

7.
Seasonal variability of maximum quantum yield of PSII photochemistry (Fv/Fm) was studied in needles of Taxus baccata seedlings acclimated to full light (HL, 100% solar irradiance), medium light (ML, 18% irradiance) or low light (LL, 5% irradiance). In HL plants, Fv/Fm was below 0.8 (i.e. state of photoinhibition) throughout the whole experimental period from November to May, with the greatest decline in January and February (when Fv/Fm value reached 0.37). In ML seedlings, significant declines of Fv/Fm occurred in January (with the lowest level at 0.666), whereas the decline in LL seedlings (down to 0.750) was not significant. Full recovery of Fv/Fm in HL seedlings was delayed until the end of May, in contrast to ML and LL seedlings. Fv/Fm was significantly correlated with daily mean (T mean), maximal (T max) and minimal (T min) temperature and T min was consistently the best predictor of Fv/Fm in HL and ML needles. Temperature averages obtained over 3 or 5 days prior to measurement were better predictors of Fv/Fm than 1- or 30-day averages. Thus our results indicate a strong light-dependent seasonal photoinhibition in needles of T. baccata as well as suggest a coupling of Fv/Fm to cumulative temperature from several preceding days. The dependence of sustained winter photoinhibition on light level to which the plants are acclimated was further demonstrated when plants from the three light environments were exposed to full daylight over single days in December, February and April and Fv/Fm was followed throughout the day to determine residual sensitivity of electron transport to ambient irradiance. In February, the treatment revealed a considerable midday increase in photoinhibition in ML plants, much less in HL (already downregulated) and none in LL plants. This suggested a greater capacity for photosynthetic utilization of electrons in LL plants and a readiness for rapid induction of photoinhibition in ML plants. Further differences between plants acclimated to contrasting light regimes were revealed during springtime de-acclimation, when short term regeneration dynamics of Fv/Fm and the relaxation of nonphotochemical quenching (NPQ) indicated a stronger persistent thermal mechanism for energy dissipation in HL plants. The ability of Taxus baccata to sustain winter photoinhibition from autumn until late spring can be beneficial for protection against an excessive light occurring together with frosts but may also restrict photosynthetic carbon gain by this shade-tolerant species when growing in well illuminated sites.  相似文献   

8.
Summary Seedling recruitment in salt marsh plant communities is generally precluded in dense vegetation by competition from adults, but is also relatively rare in disturbance-generated bare space. We examined the constraints on seedling recruitment in New England salt marsh bare patches. Under typical bare patch conditions seed germination is severely limited by high substrate salinities. We examined the germination requirements of common high marsh plants and found that except for one notably patch-dependent fugitive species, the germination of high marsh plants is strongly inhibited by the high soil salinities routinely encountered in natural bare patches. Watering high marsh soil in the greenhouse to alleviate salt stress resulted in the emergence of up to 600 seedlings/225 cm2. The vast majority of this seed bank consisted of Juncus gerardi, the only common high marsh plant with high seed set. We tested the hypothesis that salt stress limits seedling contributions to marsh patch secondary succession in the field. Watering bare patches with fresh water partially alleviated patch soil salinities and dramatically increased both the emergence and survival of seedlings. Our results show that seedling recruitment by high marsh perennial turfs is limited by high soil salinities and that consequently their population dynamics are determined primarily by clonal growth processes. In contrast, populations of patch-dependent fugitive marsh plants which cannot colonize vegetatively are likely governed by spatially and temporally unpredictable windows of low salinities in bare patches.  相似文献   

9.
Summary Previous studies have shown that the shrub, Baccharis pilularis spp. consanguinea, invades annual grasslands in the San Francisco Bay region in a sporadic manner. Invasion was shown to be positively correlated with the amount of rainfall received in the spring. Here we show that, although Baccharis seeds are dispersed near the beginning of the winter rainy season, seedling root growth is extremely slow until spring. At this time, cessation of the winter rains and transpiration by the grassland annuals results in drying of the upper soil profile. We conclude that establishment of Baccharis seedlings at our study site usually fails because seedling roots cannot reach depths of permanently moist soil, below the depth of the grass roots, before this soil drought occurs. The continuation of rains into the warmer spring months provides a window of time when favorable temperatures and adequate soil moisture allow shrubs to establish.  相似文献   

10.
I. R. Noble 《Oecologia》1980,45(3):350-353
Summary Observations of tussock grasses (mainly Poa species) and tree seedlings (Eucalyptus pauciflora) growing near treeline suggested that the tussocks may physically protect and compete with the tree seedlings. An analysis of nearest neighbour data from sites burnt in 1972–3 showed the there is a minimum separation between seedlings and tussocks, indicating that competition is taking place. Correlation and principal components analyses show that seedlings growing close to tussocks tend to be taller, with fewer stems and leaves than those growing further away. This same trend from tall, few-stemmed individuals to shorter multistemmed individuals also occurs with an increase in altitude. It is concluded that the trend in habit is related to exposure to environmental extremes. The concept of the regeneration niche and its application to E. pauciflora seedlings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号