首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The hypothesis that carnivores can significantly suppress prey populations after they collapse during drought was tested by predator-removal experiments. Low populations of rabbits (Oryctolagus cuniculus) responded with significantly accelerated growth where foxes (Vulpes vulpes) and feral cats (Felis catus) were continually shot. Experiments in years of good pasture and poor were confirmatory. After only 14 months, the rabbits were well on their way to another eruption whereas untreated populations had remained low for 2.5 yrs until a second drought. These studies confirm the impact of carnivores found for low populations of cyclical prey but there was no measurable effect of predator-removal on the population declines in our studies. They were due to aridity and poor pastures. The concept of Environmentally Modulated Predation is presented. Only after the intervention of a widespread environmental event is such limiting predation possible. Drought is also the cause in arid Australia for dingoes (Canis familiaris dingo) preying seqenntially on rodents, rabbits and red kangaroos, while wildfire was the cause in temperate forests. Such environmental intervention may be more widespread than usually considered, triggering some apparent predator-prey cycles. The major factors limiting rabbits in inland Australia are: adequacy of green herbage during breeding, food scarcity during average summers, critical shortages of food and its low quality (including moisture content) during crashes in drought, followed by limiting predation. Contrasting life-histories are one cause for the ultimate escape of rabbit populations from limiting predation as rabbits can breed continuously but carnivores seasonally only. Patchy predation and alternate prey may also play a part.  相似文献   

2.
There has long been debate regarding the primacy of bottom-up and top-down effects as factors shaping ecosystems. The exploitation ecosystems hypothesis (EEH) predicts that predators indirectly benefit plants because their top-down effects limit herbivores’ consumption of plants, and that the strength of trophic cascade increases with increasing primary productivity. However, in arid environments, pulses of primary productivity produced by irregular rainfall events could decouple herbivore–plant and predator–prey dynamics if high conversion efficiency from seed biomass to consumers allows the rapid build-up of consumer populations. Here, we test predictions of the EEH in an arid environment. We measured activity/abundances of dingoes, red kangaroos and grasses, and diet of dingoes, in landscapes where dingoes were culled or not culled over 3 years. Dingo activity was correlated with rainfall, and their tracks were less frequent at culled sites. Kangaroo abundance was greater at sites where dingoes were culled and increased with rainfall in the previous 6 months. Grass cover was greater at sites where dingoes were not culled and increased with rainfall in the previous 3 months. During a period of average rainfall, dingoes primarily consumed rodents and increased their consumption of kangaroos during a period of drier conditions. Our results are consistent with the hypothesis that suppression of an apex predator triggers a trophic cascade, but are at odds with the EEH’s prediction that the magnitude of trophic cascades should increase with primary productivity. Our study demonstrates that temporal fluctuations in primary productivity can have effects on biomasses of plants and consumers which are in many ways analogous to those observed along spatial gradients of primary productivity.  相似文献   

3.
In arid environments, ecological refuges are often conceptualised as places where animal species can persist through drought owing to the localised persistence of moisture and nutrients. The mesopredator release hypothesis (MRH) predicts that reduced abundance of top-order predators results in an increase in the abundance of smaller predators (mesopredators) and consequently has detrimental impacts on the prey of the smaller predators. Thus according to the MRH, the existence of larger predators may provide prey with refuge from predation. In this study, we investigated how the abundance of an endangered rodent Notomys fuscus is affected by Australia's largest predator, the dingo Canis lupus dingo , introduced mesopredators, introduced herbivores, kangaroos and rainfall. Our surveys showed that N. fuscus was more abundant where dingoes occurred. Generalised linear modelling showed that N. fuscus abundance was associated positively with dingo activity and long-term annual rainfall and negatively with red fox Vulpes vulpes activity. Our results were consistent with the hypothesis that areas with higher rainfall and dingoes provide N. fuscus with refuge from drought and predation by invasive red foxes, respectively. Top-order predators, such as dingoes, could have an important functional role in broad-scale biodiversity conservation programmes by reducing the impacts of mesopredators.  相似文献   

4.
The dietary and predator-prey relationships of Canis familiaris dingo were studied for 9 yr at a coastal site and for 1.5 yr at a montane site in south-eastern Australia. The percentage occurrences of items eaten were obtained from faeces, and the abundances of prey by counting water-birds, trapping small mammals, and tracking large and medium-sized mammals on specially prepared soil plots. Dingoes were also estimated by tracking. The diet was broad but predominantly mammalian (23 species). Dietary frequencies were grouped around three weight modes, 0.1, 1.25 and 16 kg, corresponding with bush rat (Rattus fuscipes), ringtail possum (Pseudocheirus peregrinus) and swamp wallaby (Wallabia bicolor). The amplitudes of those frequencies approximately doubled from mode to mode, viz. 4, 13.5 and 28.3%, respectively. Medium-sized mammals have been recognized as the staple prey because of their dependability. Their density estimates fluctuated least among prey-groups, and track records of dingoes in the mountains were significantly related to them. Other categories of prey were supplementary (large mammals), opportune (small mammals) and scavenged. Although there were general tendencies for dietary frequencies to follow prey abundances, significant functional and numerical responses were obtained only for water-birds (coot and swan). Their super-abundance in the mid-years of the coastal study and their highly clumped distribution were the likely causes. Predation was disproportionately severe on mammalian prey-classes after an extensive wildfire at the coastal site. Such predation may have suppressed populations of wallabies and kangaroo for 2 yr until the water-birds became super-abundant. The prevalence of wombats in the mountains may have induced heavy predation upon other less numerous large prey. Concepts of profitability in feeding appear to apply to the dingo more than those of optimization of time or energy. The decline in dingoes was correlated most with long-term declines in water-birds and medium-sized mammals. At the time, abundance estimates of wallabies and kangaroos were increasing and those species increasingly predominated in the diet. The ability to hunt co-operatively was apparently ineffectual in preventing decline in dingo numbers. It is suggested that pack size is related inversely to the level of temporal instability in the environment. Frequent wildfires may prevent staple (mediumsized) and supplementary (large) prey from being abundant simultaneously, a combination thought necessary for large pack size.  相似文献   

5.
Feeding ecology of red fox Vulpes vulpes was studied by scat analysis and snow-tracking m primeval temperate forest and adjacent meadows during four years (1985/86-1988/89) Winters varied from mild to unusually severe Main food resources for foxes were rodents of open meadows and river valleys (root vole Microtus oeconomus ). forest rodents (bank vole Clethrionomys glareolus and yellow-necked mouse Apodemus flavicollis ), hare Lepus europaetis and carcasses of wild boar Sus scrofa and red deer Cervus elaphus either killed by wolves and lynx or that had died from inanition Composition of fox diet m four cold seasons (autumn-winter) was compared to the abundance of main food resources Prolonged, sharp decline of Microtus was followed by only a twofold decrease of its share in fox diet Foxes continued to prey on declining Microlus The changes in the proportions of forest rodents and hare in fox diet clearly followed the fluctuations in numbers of these two prey Carcasses were alternative, buffer food to foxes and were taken considerably when Microlus and other prey were in low numbers or poorly accessible The depth of snow was the most important factor restricting foxes access to rodents Snow-tracking revealed that foxes dwelling in the forest widely used adjacent open areas In open meadows foxes mainly hunted for rodents, while in the forest the most significant foraging activity was scavenging Seasonal analysis of fox diet revealed that consumption of Microlus by foxes was stable throughout the year (37-47% of biomass consumed) Bank vole significantly contributed to fox diet in autumn, and hare in summer only Scavenging was most pronounced in winter and spring when carcasses made up 30% of biomass taken  相似文献   

6.
Even though intra-guild predators frequently prey on the same species, it is unclear whether diet overlap between two predators is a source of interspecific competition or whether predators simply use the same abundant prey resource. We measured the extent to which the diets of barn owls (Tyto alba) and long-eared owls (Asio otus) in Israel overlap and examined whether yearly differences in diet overlap correlate with barn owl breeding success. Pianka’s index of niche overlap was positively related to barn owl population size but not to its breeding success. The number of breeding barn owls was higher when long-eared owls consumed more rodents, suggesting that diet overlap most likely increased when rodents became more abundant. Therefore, in Israel, when these two owl species prey more often on rodents, their diets are more similar and interspecific competition is reduced. Unlike sympatric populations in Europe, in years when rodents are less abundant in Israel long-eared owls switch to hunting alternative prey (e.g., birds), perhaps to avoid competition with barn owls.  相似文献   

7.
Spiller DA  Schoener TW 《Oecologia》1990,83(2):150-161
Summary To determine the effect of lizards on webspider populations, we conducted a long-term field experiment in the Bahamas. Numbers of spider individuals were about 3 times higher in lizard-removal enclosures than in control enclosures with natural densities of lizards. Dietary analyses showed that lizards ate spiders and that lizard and spider diets overlapped substantially. Lizards reduced biomass of prey consumed by spiders; details indicated that they reduced biomass of large (> 4 mm) prey consumed by spiders more than biomass of small (4 mm) prey. Similarly, lizards reduced biomass of large aerial arthropods caught in sticky traps but not biomass of small aerial arthropods. We found no evidence that the lizard effect on prey consumption by spiders was caused by a spatial shift from areas with high aerial arthropod abundance to areas with low aerial arthropod abundance. Lizards reduced adult female cephalothorax width and fecundity of spiders. In a separate experiment, food-supplemented spiders were more fecund than control spiders. This study indicates that the interaction between lizards and spiders includes both predation and competition for food.  相似文献   

8.
Dingoes/wild dogs (Canis dingo/familiaris) and red foxes (Vulpes vulpes) are widespread carnivores in southern Australia and are controlled to reduce predation on domestic livestock and native fauna. We used the occurrence of food items in 5875 dingo/wild dog scats and 11,569 fox scats to evaluate interspecific and geographic differences in the diets of these species within nine regions of Victoria, south-eastern Australia. The nine regions encompass a wide variety of ecosystems. Diet overlap between dingoes/wild dogs and foxes varied among regions, from low to near complete overlap. The diet of foxes was broader than dingoes/wild dogs in all but three regions, with the former usually containing more insects, reptiles and plant material. By contrast, dingoes/wild dogs more regularly consumed larger mammals, supporting the hypothesis that niche partitioning occurs on the basis of mammalian prey size. The key mammalian food items for dingoes/wild dogs across all regions were black wallaby (Wallabia bicolor), brushtail possum species (Trichosurus spp.), common wombat (Vombatus ursinus), sambar deer (Rusa unicolor), cattle (Bos taurus) and European rabbit (Oryctolagus cuniculus). The key mammalian food items for foxes across all regions were European rabbit, sheep (Ovis aries) and house mouse (Mus musculus). Foxes consumed 6.1 times the number of individuals of threatened Critical Weight Range native mammal species than did dingoes/wild dogs. The occurrence of intraguild predation was asymmetrical; dingoes/wild dogs consumed greater biomass of the smaller fox. The substantial geographic variation in diet indicates that dingoes/wild dogs and foxes alter their diet in accordance with changing food availability. We provide checklists of taxa recorded in the diets of dingoes/wild dogs and foxes as a resource for managers and researchers wishing to understand the potential impacts of policy and management decisions on dingoes/wild dogs, foxes and the food resources they interact with.  相似文献   

9.
There is global interest in restoring populations of apex predators, both to conserve them and to harness their ecological services. In Australia, reintroduction of dingoes (Canis dingo) has been proposed to help restore degraded rangelands. This proposal is based on theories and the results of studies suggesting that dingoes can suppress populations of prey (especially medium‐ and large‐sized herbivores) and invasive predators such as red foxes (Vulpes vulpes) and feral cats (Felis catus) that prey on threatened native species. However, the idea of dingo reintroduction has met opposition, especially from scientists who query the dingo's positive effects for some species or in some environments. Here, we ask ‘what is a feasible experimental design for assessing the role of dingoes in ecological restoration?’ We outline and propose a dingo reintroduction experiment—one that draws upon the existing dingo‐proof fence—and identify an area suitable for this (Sturt National Park, western New South Wales). Although challenging, this initiative would test whether dingoes can help restore Australia's rangeland biodiversity, and potentially provide proof‐of‐concept for apex predator reintroductions globally.  相似文献   

10.
Theory predicts that generalist predators will switch to alternative prey when preferred foods are not readily available. Studies on the feeding ecology of the American marten (Martes americana) throughout North America suggest that this mustelid is a generalist predator feeding largely on voles (Microtus sp.; Clethrionomys sp.). We investigated seasonal and annual changes in diets of martens in response to the changing abundance of small rodents (Peromyscus keeni, and Microtus longicaudus) on Chichagof Island, Southeast Alaska, using stable isotope analysis. We hypothesized that martens would feed primarily on small rodents during years with high abundance of these prey species, whereas during years of low abundance of prey, martens would switch to feed primarily on the seasonally available carcasses of salmon. We also hypothesized that home-range location on the landscape (i.e., access to salmon streams) would determine the type of food consumed by martens, and martens feeding on preferred prey would exhibit better body condition than those feeding on other foods. We live-captured 75 martens repeatedly, from mid-February to mid-December 1992–1994. We also obtained marten carcasses from trappers during late autumn 1991 and 1992, from which we randomly sub-sampled 165 individuals. Using stable isotope ratios and a multiple-source mixing model, we inferred that salmon carcasses composed a large portion of the diet of martens in autumn during years of low abundance of rodents (1991 and 1992). When small rodents were available in high numbers (1993 and 1994), they composed the bulk of the diet of martens in autumn, despite salmon carcasses being equally available in all years. Selection for small rodents occurred only in seasons in which abundance of small rodents was low. Logistic regression revealed that individuals with access to salmon streams were more likely to incorporate salmon carcasses in their diet during years of low abundance of small rodents. Using stable isotope analysis on repeated samples from the same individuals, we explored some of the factors underlying feeding habits of individuals under variable ecological conditions. We were unable to demonstrate that body weights of live-captured male and female martens differed significantly between individuals feeding on marine-derived or terrestrial diets. Therefore, martens, as true generalist predators, switched to alternative prey when their principal food was not readily available on a seasonal or annual basis. Although salmon carcasses were not a preferred food for martens, they provided a suitable alternative to maintain body condition during years when small rodents were not readily available. Received: 1 May 1996 / Accepted: 24 February 1997  相似文献   

11.
Allen BL  Leung LK 《PloS one》2012,7(5):e36426
The prevalence of threatened species in predator scats has often been used to gauge the risks that predators pose to threatened species, with the infrequent occurrence of a given species often considered indicative of negligible predation risks. In this study, data from 4087 dingo (Canis lupus dingo and hybrids) scats were assessed alongside additional information on predator and prey distribution, dingo control effort and predation rates to evaluate whether or not the observed frequency of threatened species in dingo scats warrants more detailed investigation of dingo predation risks to them. Three small rodents (dusky hopping-mice Notomys fuscus; fawn hopping-mice Notomys cervinus; plains mice Pseudomys australis) were the only threatened species detected in <8% of dingo scats from any given site, suggesting that dingoes might not threaten them. However, consideration of dingo control effort revealed that plains mice distribution has largely retracted to the area where dingoes have been most heavily subjected to lethal control. Assessing the hypothetical predation rates of dingoes on dusky hopping-mice revealed that dingo predation alone has the potential to depopulate local hopping-mice populations within a few months. It was concluded that the occurrence of a given prey species in predator scats may be indicative of what the predator ate under the prevailing conditions, but in isolation, such data can have a poor ability to inform predation risk assessments. Some populations of threatened fauna assumed to derive a benefit from the presence of dingoes may instead be susceptible to dingo-induced declines under certain conditions.  相似文献   

12.
13.
Inheritance of Glucose-6-phosphate Dehydrogenase Variation in Kangaroos   总被引:9,自引:0,他引:9  
THE production of glucose-6-phosphate dehydrogenase (EC 11149, G6PD) in human1, horse and donkey2 and brown and blue hare3 cells is governed by genes carried by the X chromosome. Two electrophoretic forms of G6PD have been found in wallaroos and euros (Macropus robustus Gould) and one in red kangaroos (Macropus rufus (Desm.)); members of the marsupial family Macropodidae (kangaroos). This analysis used electrophoresis of red blood cell haemolysates on cellulose acetate4. No polymorphic populations were found5 but electrophoretic phenotypes of euros (Macropus robustus erubescens Sclater) were characterized by a single slow moving band (G6PD-S) while those of wallaroos (Macropus r. robustus Gould) had a single fast moving band (G6PD-F). Red kangaroo populations were uniformly G6PD-S.  相似文献   

14.
We investigated how long‐term suppression of populations of a top predator, the dingo Canis dingo, affected composition of sympatric avifauna in Australian deserts, by surveying bird assemblages across ~80 000 km2 of arid dune‐fields on either side of the Dingo Barrier Fence (DBF; a 5614 km‐long fence separating ecosystems in which dingoes are abundant from ecosystems in which dingoes are functionally extinct). Using fourth‐corner modelling, incorporating species’ traits, we identified apparent declines of sedentary birds that nest in low vegetation and small birds that feed primarily on grass seed, and increases in scavenging birds associated with the functional extinction of dingoes. Occupancy differed between sites inside and outside the DBF in 13 bird species. We hypothesise that these differences in bird assemblages across the DBF result, in part, from increases in kangaroos Macropus spp. and red foxes Vulpes vulpes in arid landscapes where dingoes have been removed. Our study provides evidence that the functional extinction of a large terrestrial predator has had pervasive ecosystem effects, including shifts in composition of avian assemblages.  相似文献   

15.
We characterized the diet of the Indian fox (Vulpes bengalensis) during the breeding season in a semi-desert region of Western India. Diet was estimated using scat analysis. We used Index of Relative Importance (IRI) to determine the contribution of prey items in the diet of the Indian fox.Indian foxes were observed to feed on a wide variety of prey items. Arthropods were the most frequently occurring prey in their diet. IRI scores were highest for the group Coleoptera and Orthoptera followed by rodents, termites, Ziziphus fruits and spiny tailed lizards (Uromastyx hardwickii). IRI scores for rodents were higher for pups, differing significantly from proportions present in adult diet, thus indicating that they are crucial food items for the young ones. Prey proportions in the fox diet differed between the two habitats in the study area (grassland and scrubland).Our data suggest that the Indian fox is essentially an omnivore showing similar diet (in terms of high incidence of arthropods) to foxes inhabiting arid and semi-arid regions. The opportunistic and generalist strategy has probably helped the species to survive in varied habitats across the Indian subcontinent.  相似文献   

16.
The distribution of cattle and red kangaroos among the major communities of a 170 km2 paddock in central Australia was determined from 108 and 82 air surveys respectively over a four and a half year period. Fifty-nine surveys of each species were used in this report. Changes in use of the communities by the two species were analysed in relation to forage conditions using linear regression techniques. The two species showed trends in time of use of the open and wooded communities. Kangaroos used the mulga-perennial community (groved Acacia woodland with a shrub and perennial grass understorey) during good forage conditions and moved to the drought refuge open communities when forage conditions deteriorated. Cattle, on the other hand, used the open communities during good forage conditions and tended to move to the mulga communities and the hills when drought began. Mulga-annual (ungroved Acacia woodland with short grass and forb understorey) was the only major community which showed no clear linear relationship between kangaroo use and forage conditions. This might be a buffer area from which kangaroos come and go as other areas become more attractive as feeding areas. Cattle, however, show some preference for mulga annual during medium forage conditions. There appears to be little spatial interaction by the two species except during drought when kangaroos concentrate on the open communities and some cattle continue to feed in these communities. Community selection seems to be determined mainly by forage conditions, as there is no evidence that one species attracts or repels the other in spatial terms. In the conditions observed, the two species successfully coexisted with some control of numbers of cattle by man.  相似文献   

17.
David Choquenot  David M. Forsyth 《Oikos》2013,122(9):1292-1306
The exploitation ecosystems hypothesis (EEH) proposes that 1) plant biomass reflects the primary productivity of an ecosystem modified by the regulating effect of herbivory, and 2) herbivore abundance reflects the productivity of plants modified by the regulating effect of predation. Primary productivity thus determines the number of trophic levels in an ecosystem and the extent to which bottom–up and top–down regulation influence the biomass ratios of adjacent and non‐adjacent trophic levels (i.e. trophic cascading). We constructed an interactive model of plant (pasture), herbivore (red kangaroo Macropus rufus) and predator (dingo Canis lupus dingo), a system in which trophic cascades have been suggested to occur, and used it to test the effects of increasing stochastic variation in primary productivity and dingo culling on predictions of the EEH. The model contained four feedback loops: the predator–herbivore and herbivore–plant feedback loops, and the predator and plant density‐dependent feedback loops. The equilibrium conditions along the primary productivity gradient reproduced the three zones of trophic dynamics predicted by the EEH, plus an additional zone at productivities above which the maximum density of a predator is achieved due to social regulation: that zone is characterized by increasing herbivore density and decreasing plant biomass. Culling dingoes produced trophic cascades that were strongly attenuated at primary productivities below which the maximum density of dingoes was attained. Results were robust to uncertainty in kangaroo off‐take by dingoes and to the efficacy of dingo culling, but prey switching by dingoes from red kangaroos to reptiles would weaken trophic cascades. We conclude that social regulation of carnivores has important implications for expression of the EEH and trophic cascades, and that attenuation of trophic cascades increases with increasing stochasticity in primary productivity. Our model also provides a framework for understanding the conditions in which dingo‐mediated trophic cascades might be expected to occur, and generates testable predictions about the effects of higher dingo densities (e.g. by stopping culling or reintroduction to former range) on kangaroo and pasture dynamics.  相似文献   

18.
The control of vertebrate pests by vertebrate predators   总被引:1,自引:0,他引:1  
Carnivores can control mammalian pests for long periods, but only after pest numbers have been reduced by other means. In Australia, the cause is prolonged dry weather. The consequent low populations of rabbits can then be regulated by European foxes, feral cats and dingoes. Kangaroos, and probably feral goats and pigs, succumb to dingoes at the same time, as substitute prey for rabbits. In the general case, such regulatory predation may be triggered climatically, by disease or by human intervention. When predators are themselves pests to be controlled, integrated pest management may be required to avoid unwanted resurgences of other pests.  相似文献   

19.
Invasive predators are responsible for the extinction of numerous island species worldwide. The naïve prey hypothesis suggests that the lack of co-evolutionary history between native prey and introduced predators results in the absence of behavioral responses to avoid predation. The lack of terrestrial mammal predators is a core feature of islands at the southern end of the Americas. Recently, however, the American mink (Neovison vison) established as a novel terrestrial predator, where rodents became a main portion of its diet. Here, we investigated on Navarino Island, Chile, macro- and micro-habitat selection of small rodents using Sherman traps. Additionally, we experimentally tested behavioral responses of small rodents to indirect cues of native raptorial predation risk (vegetation cover) and direct cues of novel mink predation risk (gland odor) using Sherman traps and foraging trays (giving-up density (GUD)). At the macro-habitat level, we detected native rodents of the species Abrothrix xanthorhinus and Oligoryzomys longicaudatus and the exotic Mus musculus. In general, rodents preferred scrubland habitats. At the micro-habitat level, we only captured individuals of A. xanthorhinus. They preferred covered habitats with tall vegetation. GUD increased in opened areas (riskier for raptorial predation) regardless of the presence or not of mink odor. These results suggest that A. xanthorhinus can perceive predation risk by raptors, but not by mink, results that accord with the hypothesis that co-evolutionary history is important for rodents to develop antipredator behavior. Given that these rodents represent an important proportion of mink diet, the low abundances together with the apparent lack of antipredator response raise conservation concerns for the small rodent populations inhabiting the southernmost island ecosystems of the Americas.  相似文献   

20.
Sex-specific niche segregation is often used to explain sexual size dimorphism (SSD). However, whether food niche partitioning between sexes occurs as a case of sexual size dimorphism or by other mechanisms, such as behavioural dimorphism or habitat segregation, remains poorly understood. To evaluate the nature and extent of food-niche differentiation between sexes in a solitary predator I examined variation in the diet of male and female pine martensMartes martes Linnaeus, 1758 in years of high and low rodent abundance. Small mammals were the most important prey for pine martens in years of both low and high rodent abundance (occurring in more than 49% of scats). Birds, invertebrates and plant material were relatively common food items in summer diet, whereas ungulate carcasses were often consumed in autumn—winter. In general, males consumed more ungulate carcasses, plant material, amphibians and reptiles than did females, whereas females preyed more on squirrels and birds than males. There was significant seasonally dependent, between-sex variation in the occurrence of shrews, small rodents, other mammals, birds and invertebrates in marten diet. Whereas the occurrence of bank vole, birds, carcasses and plant material changed between sexes, seasons and years with various rodent abundances, both sexes consumed larger prey and had increased food niche breadth in years of low compared with high rodent abundance. Neither prey size nor food niche breadth were significantly different between males and females. The food-niche overlap between sexes was consistently lower in spring and in years of low rodent abundance. A wider geographical comparison of different marten populations showed that the diet of males and females varied significantly between locations. Females consistently preyed on squirrels and birds, whereas males fed more often on ungulate carcasses and plant material. Local and geographical comparison of male and female diets suggest that food-niche partitioning between male and female pine martens changes across different habitat and food conditions, and is not related to sexual size dimorphism, but rather to behavioural differences between sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号