首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The Caenorhabditis elegans genome contains a single dystrophin/utrophin orthologue, dys-1. Point mutations in this gene, dys-1(cx35) and dys-1(cx18), result in truncated proteins. Such mutants offer potentially valuable worm models of human Duchenne muscular dystrophy. We have used microarrays to examine genes expressed differentially between wild-type C. elegans and dys-1 mutants. We found 106 genes (115 probe sets) to be differentially expressed when the two mutants are compared to wild-type worms, 49 of which have been assigned to six functional categories. The main categories of regulated genes in C. elegans are genes encoding intracellular signalling, cell-cell communication, cell-surface, and extracellular matrix proteins; genes in these same categories have been shown by others to be differentially expressed in muscle biopsies of muscular dystrophy patients. The C. elegans model may serve as a convenient vehicle for future genetic and chemical screens to search for new drug targets.  相似文献   

2.
Recently, pathogenicity models that involve the killing of the genetically tractable nematode Caenorhabditis elegans by human pathogens have been developed. From the perspective of the pathogen, the advantage of these models is that thousands of mutagenized bacterial clones can be individually screened for avirulent mutants on separate petri plates seeded with C. elegans. The advantages of using C. elegans to study host responses to pathogen attack are the extensive genetic and genomic resources available and the relative ease of identifying C. elegans mutants that exhibit altered susceptibility to pathogen attack. The use of Caenorhabditis elegans as the host for a variety of human pathogens is discussed.  相似文献   

3.
Ca(2+)/calmodulin-dependent calcineurin has been shown to have important roles in various Ca(2+) signaling pathways. We have previously reported that cnb-1(jh103) mutants, null mutants of a regulatory B subunit, displayed pleiotropic defects including uncoordinated movement and delayed egg laying in Caenorhabditis elegans. Interestingly, gain-of-function mutants of a catalytic A subunit showed exactly opposite phenotypes to those of cnb-1(null) mutants providing an excellent genetic model to define calcium-mediated signaling pathway at the organism level. Furthermore, calcineurin is also important for normal cuticle formation, which is required for maintenance of normal body size in C.elegans. Genetic interactions between tax-6 and several mutants including egl-30 and egl-10, which are known to be involved in G-protein signaling pathways suggest that calcineurin indeed regulates locomotion and serotonin-mediated egg laying through goa-1(Goalpha) and egl-30(Gqalpha). Our results indicate that, along with CaMKII, calcineurin regulates G-protein-coupled phosphorylation signaling pathways in C.elegans.  相似文献   

4.
Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity.  相似文献   

5.
6.
7.
Caenorhabditis elegans has previously been used as an alternative to mammalian models of infection with bacterial pathogens. We have developed a liquid-based assay to measure the effect of bacteria on the feeding ability of C. elegans. Using this assay we have shown that Pseudomonas aeruginosa strain PA14, Burkholderia pseudomallei and Yersinia pestis were able to inhibit feeding of C. elegans strain N2. An increase in sensitivity of the assay was achieved by using C. elegans mutant phm-2, in place of the wild-type strain. Using this assay,P. aeruginosa PA01 inhibited the feeding of C. elegans mutant phm-2. Such liquid-based feeding assays are ideally suited to the high-throughput screening of mutants of bacterial pathogens.  相似文献   

8.
Ji YJ  Nam S  Jin YH  Cha EJ  Lee KS  Choi KY  Song HO  Lee J  Bae SC  Ahnn J 《Developmental biology》2004,274(2):402-412
The rnt-1 gene is the only Caenorhabditis elegans homologue of the mammalian RUNX genes. Several lines of molecular biological evidence have demonstrated that the RUNX proteins interact and cooperate with Smads, which are transforming growth factor-beta (TGF-beta) signal mediators. However, the involvement of RUNX in TGF-beta signaling has not yet been supported by any genetic evidence. The Sma/Mab TGF-beta signaling pathway in C. elegans is known to regulate body length and male tail development. The rnt-1(ok351) mutants show the characteristic phenotypes observed in mutants of the Sma/Mab pathway, namely, they have a small body size and ray defects. Moreover, RNT-1 can physically interact with SMA-4 which is one of the Smads in C. elegans, and double mutant animals containing both the rnt-1(ok351) mutation and a mutation in a known Sma/Mab pathway gene displayed synergism in the aberrant phenotypes. In addition, lon-1(e185) mutants was epistatic to rnt-1(ok351) mutants in terms of long phenotype, suggesting that lon-1 is indeed downstream target of rnt-1. Our data reveal that RNT-1 functionally cooperates with the SMA-4 proteins to regulate body size and male tail development in C. elegans.  相似文献   

9.
Sommer RJ 《Current biology : CB》2000,10(23):R879-R881
Recent studies have introduced Oscheius sp. CEW1 as a third nematode species accessible to genetic analysis, joining the better known Caenorhabditis elegans and Pristionchus pacificus. A group of vulva-defective mutants in Oscheius has been identified, with defects not seen in C. elegans.  相似文献   

10.
Endophilin is a membrane-associated protein required for endocytosis of synaptic vesicles. Two models have been proposed for endophilin: that it alters lipid composition in order to shape membranes during endocytosis, or that it binds the polyphosphoinositide phosphatase synaptojanin and recruits this phosphatase to membranes. In this study, we demonstrate that the unc-57 gene encodes the Caenorhabditis elegans ortholog of endophilin A. We demonstrate that endophilin is required in C. elegans for synaptic vesicle recycling. Furthermore, the defects observed in endophilin mutants closely resemble those observed in synaptojanin mutants. The electrophysiological phenotype of endophilin and synaptojanin double mutants are virtually identical to the single mutants, demonstrating that endophilin and synaptojanin function in the same pathway. Finally, endophilin is required to stabilize expression of synaptojanin at the synapse. These data suggest that endophilin is an adaptor protein required to localize and stabilize synaptojanin at membranes during synaptic vesicle recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号