首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
Leatherback turtles (Dermochelys coriacea) are endangered, and declining population trends suggest that they are vulnerable to becoming extinct in the Pacific Ocean. Population recovery depends on strong conservation measures (e.g., nest protection, reduction of bycatch, and foraging habitat preservation) and on how fast leatherbacks grow and reach maturity, making the latter of grave concern. The research reported here marks the first time that several leatherback turtles have been maintained in captivity for nearly 2 years, from hatchlings (6.31 ± 0.13 cm straight carapace length (SCL) and 46.0 ± 1 g) to juveniles (largest, 72.0 cm SCL and 42.65 kg). Leatherbacks maintained an average growth rate of 31.9 ± 2.8 cm year− 1 in SCL throughout the study period. A length-mass relationship of the form, mass (kg) = 0.000214 ? SCL (cm) 2.86, fitted our data and data from four other captive studies, 11 wild juveniles, and five studies of adult leatherbacks. Von Bertalanffy, Gompertz and logistic growth functions predicted age-at-maturity for leatherbacks of 16.1, 8.7 and 6.8 years, respectively. The accuracy of these age-at-maturity estimates is discussed in the light of skeletochronological studies as well as estimates obtained from conservation and genetic studies. Our data, in combination with data from sightings, suggest that leatherbacks spend their early years (0 to 5 years of age) growing in the warmer waters of the tropical and subtropical seas before entering cooler temperate waters. Information obtained from turtles incidentally captured in fisheries, supplemented with growth curve data, indicates that leatherbacks are vulnerable to entanglement or hooking in various pelagic gear types, such as drift gill nets and longline within 3 years from nest emergence. Consequently, leatherbacks are exposed to threats from marine fisheries for > 80% of their early life before carapace length characteristic of reproductive maturity is attained.  相似文献   

2.
Age and growth are important parameters for better understanding of life history and population dynamics of animal species, as well as for formulating management strategies. However, these data are difficult to obtain for sea turtles because of overall slow growth, delayed maturation and highly migratory behaviour. The loggerhead sea turtle, Caretta caretta, is a widely distributed species, globally listed as endangered. Although the species has been well‐studied in some regions, little is known about various aspects of its biology in other populations, such as those in the waters of the western South Atlantic Ocean, especially outside nesting areas. To address age and growth, loggerhead turtles found dead stranded on the northern coast of the state of Rio Grande do Sul during a period of 16 years (1994–2010) were utilized for estimation of age and growth rates using skeletochronology. The individuals analyzed were predominantly neritic juveniles, ranging from 53 to 101 cm curved carapace length (CCL; mean = 71 cm), with estimated ages between 10 and 29 years (mean = 15 years). Mean estimated annual growth rate was 2.1 cm CCL year?1 (1.9 cm SCL yr?1), showing large variation among individuals and between successive years in the same individual. Generalized additive mixed models analysis indicated that growth response was influenced by age, CCL and year. The results demonstrated that the southern coast of Brazil is an important area for the development of neritic juveniles of this species, which appear to recruit to this region beginning at about 12 years of age and sizes greater than 55 cm CCL.  相似文献   

3.
Most marine turtle species are non-annual breeders and show variation in both the number of eggs laid per clutch and the number of clutches laid in a season. Large levels of inter-annual variation in the number of nesting females have been well documented in green turtle nesting populations and may be linked to environmental conditions. Other species of marine turtle exhibit less variation in nesting numbers. This inter-specific difference is thought to be linked to trophic status. To examine whether individual reproductive output is more variable in the herbivorous green turtle (Chelonia mydas Linneaeus 1758) than the carnivorous loggerhead (Caretta caretta Linneaeus 1758), we examined the nesting of both species in Cyprus over nine seasons. Green turtles showed slower annual growth rates (0.11 cm year−1 curved carapace length (CCL) and 0.27 cm year−1 curved carapace width (CCW)) than loggerhead turtles (0.36 cm year−1 CCL, 0.51 cm year−1 CCW). CCL was highly correlated to mean clutch size in both green (R2=0.51) and loggerhead turtles (R2=0.61) and maximal clutch size of green turtles (R2=0.58). Larger females did not lay a greater number of clutches or have a shorter remigration interval than smaller females of either species. On average, the size of green turtle clutches increased and that of loggerhead turtles decreased as the season progressed. Individual green turtles, however, produced more eggs per clutch through the season to a maximum in the third or fourth clutch. In loggerhead turtles, clutches 1-4 were very similar in size but the fifth clutch was 38% smaller than the first. No individuals of either species were recorded laying more than five clutches. Green turtles may not be able to achieve their maximum reproductive output with respect to clutch size throughout the season, whereas only loggerhead turtles laying five clutches (n=5) appear to become resource depleted. Green turtles nesting in years when large numbers of nests were recorded laid a greater number of clutches than females nesting in years with lower levels of nesting.  相似文献   

4.
Understanding the distribution of bycaught sea turtles could inform conservation strategies and priorities. This research analyses the distribution of turtles caught as longline fisheries bycatch on the high seas of the Atlantic Ocean. This research collected 18,142 bycatch observations and 47.1 million hooks from large-scale Taiwanese longline vessels in the Atlantic Ocean from June 2002 to December 2013. The coverage rates were ranged from 0.48% to 17.54% by year. Seven hundred and sixty-seven turtles were caught, and the major species were leatherback (59.8%), olive ridley (27.1%) and loggerhead turtles (8.7%). Most olive ridley (81.7%) and loggerhead (82.1%) turtles were hooked, while the leatherbacks were both hooked (44.0%) and entangled (31.8%). Depending on the species, 21.4% to 57.7% were dead when brought onboard. Most of the turtles were caught in tropical areas, especially in the Gulf of Guinea (15°N-10°S, 30°W-10°E), but loggerheads were caught in the south Atlantic Ocean (25°S-35°S, 40°W-10°E and 30°S-40°S, 55°W-45°W). The bycatch rate was the highest at 0.030 per 1000 hooks for leatherbacks in the tropical area. The bycatch rates of olive ridley ranged from 0 to 0.010 per thousand hooks. The loggerhead bycatch rates were higher in the northern and southern Atlantic Ocean and ranged from 0.0128 to 0.0239 per thousand hooks. Due to the characteristics of the Taiwanese deep-set longline fleet, bycatch rates were lower than those of coastal longline fisheries, but mortality rates were higher because of the long hours of operation. Gear and bait modification should be considered to reduce sea turtle bycatch and increase survival rates while reducing the use of shallow hooks would also be helpful.  相似文献   

5.
The erosion and transport of juvenile softshell clams (Mya arenaria) was studied in a laboratory flume in relation to free-stream velocity (0, 7, 16, 29 and 35 cm s− 1), shell length (0-5, 5-10, 10-15, 15-20 mm) and type of sediment (mud, sandy-mud, sand and gravel). Our results showed that these factors interact together on the erosion of clams from the sediment. Juveniles were eroded in great numbers in sand while mud retained them more easily. Bedload transport was initiated at speeds of 16 cm s− 1. Most of the clams were eroded in sandy sediments at speeds of 29 and 35 cm s− 1. The smallest individuals were highly vulnerable to erosion compared to the other size classes studied. A results-based model using the logistic regression statistics was proposed. This allowed the estimation of erosion probabilities for a given hydrosedimentary environment. A field validation of the model was then carried out. Field results confirmed the importance of free-stream velocity, shell length and type of sediment on the erosion rate of clams. The differences observed between predicted and field results suggest that the model underestimated the erosion rate in the field. Results are discussed in the context of hydrosedimentary environments found off the eastern coast of Canada.  相似文献   

6.
Loggerhead sea turtles (Caretta caretta) originating from the Western Atlantic carry out one of the largest marine migrations, reaching the eastern Atlantic and Mediterranean Sea. It has been proposed that this transatlantic journey is simply a consequence of drifting, with the lack of a target destination and a passive dispersal with oceanic currents. This predicts that the size of the source populations and geographic distance to the feeding grounds should play important roles in defining stock composition in the eastern Atlantic and Mediterranean Sea. Under this scenario, near pelagic stocks would have no genetic structure, and would be composed of similar cohorts from regional rookeries. To address this question, we sampled individuals from one important eastern Atlantic feeding ground, the Canary Islands, and sequenced a fragment of the mitochondrial DNA control region. We compared the composition of this feeding stock with published data of other proximal areas: Madeira, Azores and Andalusia. “Rookery-centric” mixed stock analysis showed that the distribution of loggerhead sea turtles along the eastern Atlantic feeding grounds was in latitudinal accordance to their natal origin: loggerhead turtles from Florida were significantly more abundant in Azores (30%) than in Canary Islands (13%), while those from Mexico had a poor representation in Azores (13%) but were more prevalent in Canary Islands (34%). Also, genetic stability in temporal and size analyses of the Canary Island aggregation was found, showing a long period of residency. These results indicate a non-random distribution of loggerhead juveniles in oceanic foraging grounds. We discuss possible explanations to this latitudinal variation.  相似文献   

7.
The main objectives of this study were: 1) to determine the influence of water currents on the suspension feeding rate of cockles (Cerastoderma edule); 2) to quantify the interaction between cockle feeding and flow on algal cell depletion in the overlying water column, and 3) to measure the effect of flow on resuspension of their pseudofaeces and faeces. Flume experiments demonstrated that suspension feeding rate (i.e. clearance rate) of C. edule was not significantly affected by increasing current speed, at least between 5 and 35 cm s− 1. Measurement of vertical profiles in algal cell concentrations within the water column showed a marked depletion above the bed, and the size of this was inversely related to currents' speeds below 5 cm s− 1. At 2 cm s− 1 the algal cell depletion was maximum immediately above the bed. However, below currents of 1 cm s− 1 the maximum depletion was at 10 cm above the bed. This was a result of the exhalent jet of the cockle pumping filtered water (i.e. algal free) vertically into the water column and above the intake level of the inhalant siphon. Such stratification of the water column would appear to be beneficial to the cockle because it reduces the degree of re-filtration of algal cell depleted water at times of low flow, when there is poor mixing and thus poor replenishment of phytoplankton to the boundary layer. Critical erosion thresholds for cockle biodeposits, produced from a diet of silt and unicellular algae, were recorded at current velocities of 15 and 25 cm s− 1, or shear velocities of 0.6 and 1.0 cm s− 1, for pseudofaeces and faeces respectively.  相似文献   

8.
Erosion and transport of juvenile individuals may alter the distribution pattern of intertidal bivalves. The burrowing success of recently transported juvenile softshell clams (Mya arenaria) was studied in a laboratory flume under a wide range of hydrosedimentary environments. Juvenile individuals (5-20 mm) were observed under a simulated 30 min slack tide before initiating the flow for a period of 60 min. Five different free-stream velocities (0, 3, 5, 10 and 24 cm s− 1) and four sediment types (mud, sandy-mud, sand and gravel) were used. The mean proportion of juvenile clams that initiated (MPI) or completed (MPC) a burial decreased with increasing shell length. Erosion from the sediment was more important in large juveniles suggesting that large juveniles may have more difficulty successfully relocating once transported. The MPI increased with increasing flow speed in experimental runs held at speed < 24 cm s− 1. This was observed in all sediment types. Most individuals were unable to burrow at 24 cm s− 1 because they got eroded. The MPC also increased with increasing flow speed in mud, sandy-mud and sand. The MPC's response to flow was more complex in gravel because of a shell length × flow speed interaction effect. Our observations suggest that water movement may induce the burrowing behaviour of recently eroded juvenile clams. Results are discussed in an ecological and aquacultural context.  相似文献   

9.
Restriction analysis of mitochondrial DNA (mtDNA) from 204 individuals of swordfish (Xiphias gladius) revealed no differentiation among samples from three sites in the Mediterranean Sea (Greece, Italy, Spain), but a high degree of differentiation between Mediterranean samples and a sample from the Gulf of Guinea. A fifth sample from the Atlantic side of the Straits of Gibraltar (Tarifa) consisted mostly of mitotypes that are common in the Mediterranean, but contained several of mtDNA types of the Guinea sample not found in the Mediterranean. We conclude that, in spite of free migration of swordfish across the Straits of Gibraltar, little genetic exchange occurs between the populations inhabiting the Mediterranean Sea and the tropical Atlantic ocean. This is the first evidence of genetic differentiation among geographic populations of this highly mobile species that supports a world-wide fishery.  相似文献   

10.
Satellite telemetry and ground-based tagging studies are complementary methods to define the spatial and temporal patterns of nesting behavior by migratory sea turtles. Estimates of site fidelity and clutch frequencies are compared for satellite telemetry versus ground truth patrols over a 6 km stretch at a southwest Florida loggerhead (Caretta caretta) rookery. Site fidelity ranged from 1.9 km to 109.1 km for all nests deposited by a female within a season. The mean site fidelity was 28.1 km for all nests, but declined to 16.9 km if omitting the first nest. Nest frequency ranged from 2 to 8 nests per season, with a modal value of 5 nests. Satellite telemetry documented a mean nest frequency of 5.4 nests per female in comparison to 2.2 nests detected by monitoring patrols. The remigrant females had higher clutch frequency, were larger in size, and had higher site fidelity compared to newly tagged females. Satellite telemetry provided improved measurements of site fidelity and reveals a need for revised fecundity estimates. If measures of clutch frequency are representative of loggerhead assemblages nesting elsewhere within the South Florida grouping, the confidence bounds on Western Atlantic loggerhead stocks are approximately 32% lower than currently accounted for annual nesting individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号