首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甲基乙二醛(MG)是一种在植物中具有多种功能的新型信号分子.为探究MG对板栗幼苗干旱胁迫的影响,以两年生'黄棚'板栗幼苗为试材,通过聚乙二醇(PEG)模拟干旱胁迫并进行MG及其清除剂N-乙酰半胱氨酸(NAC)处理,分析板栗幼苗叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(...  相似文献   

2.
Salt stress impairs reactive oxygen species (ROS) and methylglyoxal (MG) detoxification systems, and causes oxidative damage to plants. Up-regulation of the antioxidant and glyoxalase systems provides protection against NaCl-induced oxidative damage in plants. Thiol–disulfide contents, glutathione content and its associated enzyme activities involved in the antioxidant defense and glyoxalase systems, and protein carbonylation in tobacco Bright Yellow-2 cells grown in suspension culture were investigated to assess the protection offered by proline and glycinebetaine against salt stress. Salt stress increased protein carbonylation, contents of thiol, disulfide, reduced (GSH) and oxidized (GSSG) forms of glutathione, and the activity of glutathione-S-transferase and glyoxalase II enzymes, but decreased redox state of both thiol–disulfide and glutathione, and the activity of glutathione peroxidase and glyoxalase I enzymes involved in the ROS and MG detoxification systems. Exogenous application of proline or glycinebetaine resulted in a reduction of protein carbonylation, and in an increase in glutathione redox state and activity of glutathione peroxidase, glutathione-S-transferase and glyoxalase I under salt stress. Neither proline nor glycinebetaine, however, had any direct protective effect on NaCl-induced GSH-associated enzyme activities. The present study, therefore, suggests that both proline and glycinebetaine provide a protective action against NaCl-induced oxidative damage by reducing protein carbonylation, and enhancing antioxidant defense and MG detoxification systems.  相似文献   

3.
Stress-induced methylglyoxal (MG) functions as a toxic molecule, inhibiting plant physiological processes such as photosynthesis and antioxidant defense systems. In the present study, an attempt was made to investigate the MG detoxification through glutathione metabolism in indica rice [Oryza sativa L. ssp. indica cv. Pathumthani 1] under salt stress by exogenous foliar application of paclobutrazol (PBZ). Fourteen-day-old rice seedlings were pretreated with 15 mg L?1 PBZ foliar spray. After 7 days, rice seedlings were subsequently exposed to 0 (control) or 150 mM NaCl (salt stress) for 12 days. Prolonged salt stress enhanced the production of MG molecules and the oxidation of proteins, leading to decreased activity of glyoxalase enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly II). Consequently, the decreased glyoxalase activities were also associated with a decline in reduced glutathione (GSH) content and glutathione reductase (GR) activity. PBZ pretreatment of rice seedlings under salt stress significantly lowered MG production and protein oxidation, and increased the activities of both Gly I and Gly II. PBZ also increased GSH content and GR activity along with the up-regulation of glyoxalase enzymes, under salt stress. In summary, salinity induced a high level of MG and the associated oxidative damage, while PBZ application reduced the MG toxicity by up-regulating glyoxalase and glutathione defense system in rice seedlings.  相似文献   

4.
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the H2O2 and lipid peroxidation levels. Exogenous NO pre-treatment of the seedlings had little influence on the non-enzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

5.
Tripathi BN  Gaur JP 《Planta》2004,219(3):397-404
A 4-h exposure of Scenedesmus sp. to Cu or Zn enhanced intracellular levels of both test metals and proline. The level of intracellular proline increased markedly up to 10 µM Cu, but higher concentrations were inhibitory. However, intracellular proline consistently increased with increasing concentration of Zn in the medium. Cu and Zn induced oxidative stress in the test alga by increasing lipid peroxidation and membrane permeability, and by reducing SH content. Pretreatment of the test alga with 1 mM proline for 30 min completely alleviated Cu-induced lipid peroxidation, minimized K+ efflux and also reduced depletion of the SH pool. But proline pretreatment could only slightly reduce Zn-induced oxidative stress. Interestingly, proline pretreatment increased the level of Cu (25–54%) and Zn (19–49%) inside the cells. It did not affect the activities of superoxide dismutase, ascorbate peroxidase or catalase, but improved glutathione reductase activity under Cu and Zn stress. A comparison of the effects of proline pretreatment on lipid peroxidation by Cu, Zn, methyl viologen and ultraviolet-B radiation suggests that proline protects cells from metal-induced oxidative stress by scavenging reactive oxygen species rather than by chelating metal ions. Pretreatment of cells with a known antioxidant (ascorbate) and a hydroxyl radical scavenger (sodium benzoate) considerably reduced metal-induced lipid peroxidation and proline accumulation. However, sodium benzoate had a very mild effect on Zn-induced lipid peroxidation and proline accumulation. The present study demonstrates that proline possibly acts by detoxifying reactive oxygen species, mainly hydroxyl radicals, rather than by improving the antioxidant defense system under metal stress.Abbreviations APOX Ascorbate peroxidase - CAT Catalase - GR Glutathione reductase - MDA Malondialdehyde - MV Methyl viologen - ROS Reactive oxygen species - SH Sulphydryl - SOD Superoxide dismutase - UV-B Ultraviolet-B radiation  相似文献   

6.
In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H2O2, and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems.  相似文献   

7.
The changes in accumulation of two potential osmoprotectants (proline and glycine betaine), lipid peroxidation appraised as malondialdehyde (MDA) level, activities of key antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POD: EC 1.11.1.7), and glutathione reductase (GR: EC 1.6.4.2), and soluble protein profile in two cultivars of mulberry (S146 and Sujanpuri) differing in alkalinity (NaHCO3) tolerance were investigated at 2-month intervals up to 6-month growth under stress conditions. Varying levels of salinity–alkalinity developed in soil were 0, 30, 40, and 50 g of NaHCO3 kg?1 soil with pH 7.8, 9.1, 9.8, and 10.3, respectively. Alkali stress led to a consistent accumulation of proline and glycine betaine in mulberry leaves with time. The activities of leaf SOD, CAT, POD, and GR increased with increase in external salt concentration and pH. The increase in antioxidant enzyme activities was higher in cv. S146 than cv. Sujanpuri, whereas rate of lipid peroxidation measured in terms of MDA was higher in cv. Sujanpuri as compared to cv. S146. Protein profile revealed that some unknown proteins of low molecular mass (10–32.5 kDa) were induced by NaHCO3 stress, but differently in two cultivars.  相似文献   

8.
The research was conducted to investigate comparative oxidative damage including probable protective roles of antioxidant and glyoxalase systems in rice (Oryza sativa L.) seedlings under salinity stress. Seedlings of two rice genotypes: Pokkali (tolerant) and BRRI dhan28 (sensitive) were subjected to 8 dSm−1 salinity stress for seven days in a hydroponic system. We observed significant variation between Pokkali and BRRI dhan28 in phenotypic, biochemical and molecular level under salinity stress. Carotenoid content, ion homeostasis, antioxidant enzymes, ascorbate and glutathione redox system and proline accumulation may help Pokkali to develop defense system during salinity stress. However, the activity antioxidant enzymes particularly superoxide dismutase (SOD), catalase (CAT) and non-chloroplastic peroxidase (POD) were observed significantly higher in Pokkali compared to salt-sensitive BRRI dhan28. Higher glyoxalase (Gly-I) and glyoxalase (Gly-II) activity might have also accompanied Pokkali genotype to reduce potential cytotoxic MG through non-toxic hydroxy acids conversion. However, the efficient antioxidants and glyoxalase system together increased adaptability in Pokkali during salinity stress.  相似文献   

9.
The mechanism behind enhanced salt tolerance conferred by the overexpression of glyoxalase pathway enzymes was studied in transgenic vis-à-vis wild-type (WT) plants. We have recently documented that salinity stress induces higher level accumulation of methylglyoxal (MG), a potent cytotoxin and primary substrate for glyoxalase pathway, in various plant species [Yadav, S.K., Singla-Pareek, S.L., Ray, M., Reddy, M.K. and Sopory, S.K. (2005) MG levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 337, 61-67]. The transgenic tobacco plants overexpressing glyoxalase pathway enzymes, resist an increase in the level of MG that increased to over 70% in WT plants under salinity stress. These plants showed enhanced basal activity of various glutathione related antioxidative enzymes that increased further upon salinity stress. These plants suffered minimal salinity stress induced oxidative damage measured in terms of the lipid peroxidation. The reduced glutathione (GSH) content was high in these transgenic plants and also maintained a higher reduced to oxidized glutathione (GSH:GSSG) ratio under salinity. Manipulation of glutathione ratio by exogenous application of GSSG retarded the growth of non-transgenic plants whereas transgenic plants sustained their growth. These results suggest that resisting an increase in MG together with maintaining higher reduced glutathione levels can be efficiently achieved by the overexpression of glyoxalase pathway enzymes towards developing salinity stress tolerant plants.  相似文献   

10.
Water deficit is the major yield‐limiting factor of crop plants. The exposure of plants to this abiotic stress can result in oxidative damage due to the overproduction of reactive oxygen species. The aim of this work was to study the antioxidant‐stress response of drought‐tolerant (SP83‐2847 and SP83‐5073) and drought‐sensitive (SP90‐3414 and SP90‐1638) sugarcane varieties to water‐deficit stress, which was imposed by withholding irrigation for 3, 10 and 20 days. The drought‐sensitive varieties exhibited the lowest leaf relative water content and highest lipid peroxidation, hydrogen peroxide (H2O2) and proline contents during the progression of the drought‐stress condition. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX) and glutathione reductase (GR) activities changed according to variety and stress intensity. SP83‐2847 exhibited higher CAT and APX activities than the other varieties in the early stage of drought, while the activities of GPOX and GR were the highest in the other varieties at the end of the drought‐stress period. A Cu/Zn SOD isoenzyme was absent at the end of drought period from the SP90‐3414‐sensitive variety. The results indicate that lipid peroxidation and early accumulation of proline may be good biochemical markers of drought sensitivity in sugarcane.  相似文献   

11.
Drought stress affects the growth and productivity of the tea plant. However, the damage caused is not permanent. The present investigation studies the effect of CaCl2 on antioxidative responses of tea during post-drought recovery. Increase in dry mass, proline and phenolic content of leaf with decrease in H2O2 and lipid peroxidation and increased activities of enzymes such as SOD, CAT, POX and GR in response to increased foliar CaCl2 concentration are indications for the recovery of stress-induced oxidative damage and thus improving post-stress recovery potential of Camellia sinensis genotypes.  相似文献   

12.
Methylglyoxal (MG) is a toxic by‐product of glycolysis that damages DNA and proteins ultimately leading to cell death. Protection from MG is often conferred by a glutathione‐dependent glyoxalase pathway. However, glutathione is absent from the low‐GC Gram‐positive Firmicutes, such as Bacillus subtilis. The identification of bacillithiol (BSH) as the major low‐molecular‐weight thiol in the Firmicutes raises the possibility that BSH is involved in MG detoxification. Here, we demonstrate that MG can rapidly and specifically deplete BSH in cells, and we identify both BSH‐dependent and BSH‐independent MG resistance pathways. The BSH‐dependent pathway utilizes glyoxalase I (GlxA, formerly YwbC) and glyoxalase II (GlxB, formerly YurT) to convert MG to d ‐lactate. The critical step in this pathway is the activation of the KhtSTU K+ efflux pump by the S‐lactoyl‐BSH intermediate, which leads to cytoplasmic acidification. We show that cytoplasmic acidification is both necessary and sufficient for maximal protection from MG. Two additional MG detoxification pathways operate independent of BSH. The first involves three enzymes (YdeA, YraA and YfkM) which are predicted to be homologues of glyoxalase III that converts MG to d ‐lactate, and the second involves YhdN, previously shown to be a broad specificity aldo‐keto reductase that converts MG to acetol.  相似文献   

13.
Nitric oxide (NO) is dynamic molecule implicated in diverse biological functions demonstrating its protective effect against damages provoked by abiotic stresses. The present study investigated that exogenous NO pretreatment (500?µM sodium nitroprusside, 24?h) prevented the adverse effect of drought stress [induced by 10% and 20% polyethylene glycol (PEG), 48?h] on rapeseed seedlings. Drought stress resulted in reduced relative water content with increased proline (Pro) level. Drought stress insisted high H2O2 generation and consequently increased membrane lipid peroxidation which are clear indications of oxidative damage. Drought stress disrupted the glyoxalase system too. Exogenous NO successfully alleviated oxidative damage effects on rapeseed seedlings through improving the levels of nonenzymatic antioxidant pool and upregulating antioxidant enzymes’ activities. Improvement of glyoxalase system (glyoxalase I and glyoxalase II activities) by exogenous NO was significant to improve plants’ tolerance. Nonetheless, regulation of Pro level and improvement of plant–water status were vital to confer drought stress tolerance.  相似文献   

14.
BACKGROUND AND AIMS: Determining the mode of action of allelochemicals is one of the challenging aspects in allelopathic studies. Recently, allelochemicals have been proposed to cause oxidative stress in target tissue and induce an antioxidant mechanism. alpha-Pinene, one of the common monoterpenoids emitted from several aromatic plants including forest trees, is known for its growth-inhibitory activity. However, its mechanism of action remains unexplored. The aim of the present study was to determine the inhibitory effect of alpha-pinene on root growth and generation of reactive oxygen species, as indicators of oxidative stress and changes in activities of antioxidant enzymes. METHODS: Effects of alpha-pinene on early root growth were studied in five test species, Cassia occidentalis, Amaranthus viridis, Triticum aestivum, Pisum sativum and Cicer arietinum. Electrolyte leakage, lipid peroxidation, hydrogen peroxide generation, proline accumulation, and activities of the enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT) and glutathione reductase (GR) were studied in roots of C. occidentalis. KEY RESULTS: alpha-Pinene inhibited the radicle growth of all the test species. Exposure of C. occidentalis roots to alpha-pinene enhanced solute leakage, and increased levels of malondialdehyde, proline and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. Activities of the antioxidant enzymes SOD, CAT, GPX, APX and GR were significantly elevated, thereby indicating the enhanced generation of reactive oxygen species (ROS) upon alpha-pinene exposure. Increased levels of scavenging enzymes indicates their induction as a secondary defence mechanism in response to alpha-pinene. CONCLUSIONS: It is concluded that alpha-pinene inhibits early root growth and causes oxidative damage in root tissue through enhanced generation of ROS, as indicated by increased lipid peroxidation, disruption of membrane integrity and elevated antioxidant enzyme levels.  相似文献   

15.
Salt stress-induced changes in antioxidant enzymes, lipid peroxidation, proline and glycine betaine contents, and proline-metabolizing enzymes were examined in the leaves of two mulberry cultivars (Local and Sujanpuri). With increasing salinity up to 150 mM NaCl, superoxide dismutase, catalase, ascor-bate peroxidase, guaiacol peroxidase, glutathione reductase, and monodehydroascorbate reductase activities were increased in both cultivars as compared to control, but more pronounced increase was observed in cv. Local. Salt stress enhanced the rate of lipid peroxidation (as indicated by increasing MDA content) in both cultivars. Under NaCl stress, cv. Local showed less change in the MDA content than cv. Sujanpuri. Salt stress resulted in a significant accumulation of free proline in mulberry leaves, and more accumulation was detected in cv. Local than cv. Sujanpuri. The leaves of cv. Local showed 9-fold accumulation of glycine betaine in comparision with cv. Sujanpuri after 20 days at 150 mM NaCl. A decrease in proline oxidase activity and an increase in γ-glutamyl kinase activity were observed with increasing NaClconcentration. The relative water content and electrolyte leakage also decreased after increasing the NaCl concentration, but a decrease was more pronounced in cv. Sujanpuri than in cv. Local. The results indicate that oxidative stress may play an important role in salt-stressed mulberry plants and cv. Local have more efficient antioxidant characteristics, which could provide for a better protection against oxidative stress.  相似文献   

16.
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from environment. Using two brassica species (Brassica juncea and Brassica napus), nutrient solution experiments were conducted to study variation in tolerance to cadmium (Cd) toxicity based on (1) lipid peroxidation and (2) changes in antioxidative defense system in leaves of both plants (i.e., superoxide dismutase (SOD EC 1.15.1.1), catalase (CAT EC 1.11.1.6), ascorbate peroxidase (APX EC 1.11.1.11), guaiacol peroxidase (GPX EC 1.11.1.7), glutathione reductase (GR EC 1.6.4.2), levels of phytochelatins (PCs), non-protein thiols (NP-SH), and glutathione. Plants were grown in nutrient solution under controlled environmental conditions, and subjected to increasing concentrations of Cd (0, 10, 25 and 50 μM) for 15 days. Results showed marked differences between both species. Brassica napus under Cd stress exhibited increased level of lipid peroxidation, as was evidenced by the increased malondialdehyde (MDA) content in leaves. However, in Brassica juncea treated plants, MDA content remained unchanged. In Brassica napus, with the exception of GPX, activity levels of some antioxidant enzymes involved in detoxification of reactive oxygen species (ROS), including SOD, CAT, GR, and APX, decreased drastically at high Cd concentrations. By contrast, in leaves of Brassica juncea treated plants, there was either only slight or no change in the activities of the antioxidative enzymes. Analysis of the profile of anionic isoenzymes of GPX revealed qualitative changes occurring during Cd exposure for both species. Moreover, levels of NP-SH and PCs, monitored as metal detoxifying responses, were much increased in leaves of Brassica juncea by increasing Cd supply, but did not change in Brassica napus. These results indicate that Brassica juncea plants possess the greater potential for Cd accumulation and tolerance than Brassica napus.  相似文献   

17.
Up-regulation of the antioxidant system provides protection against NaCl-induced oxidative damage in plants. Antioxidants and activity of enzymes involved in the ascorbate-glutathione (ASC-GSH) cycle in tobacco Bright Yellow-2 (BY-2) were investigated to assess the antioxidant protection offered by exogenous proline and glycinebetaine (betaine from now on) against salt stress using cells grown in suspension culture. Reduced ascorbate (ASC) was detected in BY-2 cells but dehydroascorbate (DHA) was not. Large quantities of a reduced form of glutathione (GSH) and smaller quantities of an oxidized form of glutathione (GSSG) were detected in BY-2 cells. Salt stress significantly reduced the contents of ASC and GSH as well as activities of ASC-GSH cycle enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR). Exogenous proline or betaine increased the activities of all enzymes except MDHAR involved in NaCl-induced ASC-GSH cycle. Levels of ASC and GSH in BY-2 cells under salt stress were lower in the presence of proline or betaine than in the absence of proline or betaine whereas there was no difference in redox status. Proline proved more effective than betaine in maintaining the activity of enzymes involved in NaCl-induced ASC-GSH cycle. Neither proline nor betaine had any direct protective effect on NaCl-induced enzyme activity involved in the antioxidant system; however, both improved salt tolerance by increasing enzyme activity. The present study, together with our earlier findings [Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 2006;164:553-61.], suggests that proline offered greater protection against salt stress than betaine did because proline was more effective in increasing the activity of enzymes involved in the antioxidant system.  相似文献   

18.
The present study investigates the regulatory role of exogenous selenium (Se) in the antioxidant defense and methylglyoxal (MG) detoxification systems in rapeseed seedlings exposed to salt stress. Twelve-day-old seedlings, grown in Petri dishes, were supplemented with selenium (25 μM Na2SeO4) and salt (100 and 200 mM NaCl) separately and in combination, and further grown for 48 h. The ascorbate (AsA) content of the seedlings decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) increased with an increase in the level of salt stress, while the GSH/GSSG ratio decreased. In addition, the ascorbate peroxidase (APX) and glutathione S-transferase (GST) activity increased significantly with increased salt concentration (both at 100 and 200 mM NaCl), while glutathione peroxidase (GPX) activity increased only at moderate salt stress (100 mM NaCl). Glutathione reductase (GR) activity remained unchanged at 100 mM NaCl, while it was decreased under severe (200 mM NaCl) salt stress. Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, whereas a sharp decrease of these activities was observed under severe salt stress (200 mM NaCl). Concomitant increases in the levels of H2O2 and lipid peroxidation (MDA) were also measured. Exogenous Se treatment alone had little effect on the non-enzymatic and enzymatic components. However, further investigation revealed that Se treatment had a synergistic effect: in salt-stressed seedlings, it increased the AsA and GSH contents; GSH/GSSG ratio; and the activities of APX, MDHAR, DHAR, GR, GST, GPX, CAT, Gly I, and Gly II. As a result, addition of Se in salt-stressed seedlings led to a reduction in the levels of H2O2 and MDA as compared to salt stress alone. These results suggest that the exogenous application of Se rendered the plants more tolerant to salt stress-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

19.
20.
Salt stress causes oxidative damage and cell death in plants. Plants accumulate proline and glycinebetaine (betaine) to mitigate detrimental effects of salt stress. The aim of this study was to investigate the protective effects of proline and betaine on cell death in NaCl-unadapted tobacco (Nicotiana tabacum) Bright Yellow-2 suspension-cultured cells subjected to salt stress. Salt stress increased reactive oxygen species (ROS) accumulation, lipid peroxidation, nuclear deformation and degradation, chromatin condensation, apoptosis-like cell death and ATP contents. Neither proline nor betaine affected apoptosis-like cell death and G(1) phase population, and increased ATP contents in the 200mM NaCl-stressed cells. However, both of them effectively decreased ROS accumulation and lipid peroxidation, and suppressed nuclear deformation and chromatin condensation induced by severe salt stress. Evans Blue staining experiment showed that both proline and betaine significantly suppressed increment of membrane permeability induced by 200mM NaCl. Furthermore, among the ROS scavenging antioxidant defense genes studied here, mRNA levels of salicylic acid-binding (SAbind) catalase (CAT) and lignin-forming peroxidase (POX) were found to be increased by proline and betaine under salt stress. It is concluded that both proline and betaine provide a protection against NaCl-induced cell death via decreasing level of ROS accumulation and lipid peroxidation as well as improvement of membrane integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号