首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
Diets containing either coconut oil or rumen-protected fat (54 g kg−1 dry matter each) were supplied to Rumen Simulation Technique fermenters filled with faunated and defaunated rumen fluid in a 2 × 2 factorial design. Defaunation immediately reduced methane formation by about 40% with each diet. With coconut oil, methane gradually declined in faunated and defaunated rumen fluid. Finally, the extent of methane suppression was similar, both with coconut oil and with defaunation. Independently of the status of protozoa, the population of methanogens in rumen fluid was significantly reduced by coconut oil. The results suggest that defaunation and coconut oil independently and additively suppress rumen methanogenesis.  相似文献   

2.
The objective of the present study was to investigate the effects of seven different pure fatty acids on rumen fermentation using the rumen simulation technique (RUSITEC). The fatty acids were supplied to a complete ruminant diet at a proportion of 50 g x kg(-1) dietary dry matter and compared with an unsupplemented control. Methane release and methanogenic counts were suppressed by the fatty acids C12 : 0, C14 : 0 and C18 : 2 whereas C8 : 0, C10 : 0, C16 : 0 and C18 : 0 showed no corresponding effects. Apart from C12 : 0 and C18 : 2, C8 : 0 and C10 : 0 also adversely affected ciliate protozoa suggesting independence from the methane-suppressing effect of medium-chain fatty acids (MCFA). Although MCFA but not C18 : 2 reduced ruminal fibre degradation, the influence on other fermentation traits remained low. In conclusion, the supply of certain fatty acids to ruminant diets seems to have the potential to reduce methane release.  相似文献   

3.
The lethal concentrations of dioctyl sodium Sulphosuccinate (DSS) to nine species of rumen ciliate protozoa were determined. The quantity of DSS required to remove these protozoa from the rumen of sheep was approximately 30 times the lethal concentration. This was caused by interaction of the DSS with rumen particulate material, and the protozoa were killed only after the particulate fraction was saturated with DSS. Defaunation was conducted most efficiently after withdrawal of food for 24 h followed by a period (1–4 d) of reduced food intake by the host animal. In toxic concentrations of DSS the cilia of both holotrich and entodiniomorphid protozoa became detached, followed by leakage of the cell contents via the gullet or anus (in the entodiniomorphids) or at variable points in the cell wall (in the holotrichs). The population densities of most of the other rumen micro-organisms examined decreased during defaunation, but regained their original population density within 11–21 d. After this time the population densities of these organisms exceeded that shown before defaunation, with the exception of Oscillospira guilliermondii which was eliminated.  相似文献   

4.
The quantitative importance of individual ciliate species and their interaction in the rumen is still unclear. The present study was performed to test whether there are species differences in the influence on ruminal fermentation in vivo and if combinations of ciliates act additive in that respect. Six adult wethers fed a hay-concentrate diet were defaunated, then refaunated either with Entodinium caudatum (EC), Epidinium ecaudatum (EE) or Eudiplodinium maggii (EM) alone, then progressively with all possible species combinations. Feed, faeces, urine, ruminal fluid and gas were sampled for eight days always after at least 21 days of adaptation. With a linear mixed model, accounting for the 2 x 2 x 2 full factorial study design, mean marginal effect sizes, i.e., the magnitude of change in variables as caused by the presence of each ciliate species or of combinations of them, were estimated. The apparent digestibility of organic matter and neutral detergent fibre remained unaffected. The apparent N digestibility increased by 0.054 with EM (0.716 with defaunation). Ruminal ammonia increased by 1.6, 4.0 and 8.7 mmol/l in the presence of EM, EC and EE, respectively, compared to defaunation (6.9 mmol/l). In the EM + EE combination, ruminal ammonia was lower than would have been expected from an additive effect. With EE, total short-chain fatty acids increased by 23 mmol/l (100 mmol/l with defaunation), but not when EE was combined with EM. The acetate-to-propionate ratio decreased by 0.73 units in the presence of EE (4.0 with defaunation), but only when EE was the sole ciliate species in the rumen. In the presence of any ciliate species, the 16S rDNA copies of total Bacteria and major fibrolytic species decreased to 0.52- and 0.22-fold values, respectively of that found without protozoa. Total Archaea were unaffected; however, Methanobacteriales copies increased 1.44-fold with EC. The CH4-to-CO2 ratio of ruminal gas decreased by 0.036 with EM and 0.051 with EE (0.454 with defaunation). In conclusion, individual ciliates affected ruminal fermentation differently and, when different species were combined, sometimes in a non-additive manner. From the ciliates investigated, EE affected ruminal fermentation most and might play a dominant role in mixed ciliate populations.  相似文献   

5.
AIMS: To assess the effect of protozoal species on rumen fermentation characteristics in vitro. METHODS AND RESULTS: Entodinium caudatum, Isotricha intestinalis, Metadinium medium, and Eudiplodinium maggii from monofaunated wethers and mixed protozoa from conventional wethers were obtained by centrifugation, re-suspended at their normal densities in rumen fluid supernatants from defaunated or conventional wethers and incubated in vitro. The presence of protozoa increased the concentration of ammonia and altered the volatile fatty acids balance with more acetate and butyrate produced at the expense of propionate. Differences among species were observed, notably in the production of methane, which increased with E. caudatum as compared to other ciliates and to defaunated and mixed protozoa treatments (P < 0.05). The increased methanogenesis was not correlated to protozoal biomass indicating that the metabolism of this protozoan and/or its influence on the microbial ecosystem was responsible for this effect. CONCLUSIONS: Entodinium caudatum stimulated the production of methane, a negative effect that was reinforced by a concomitant increase in protein degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: Comparison of individual species of protozoa highlighted the particular influence of E. caudatum on rumen fermentation. Its elimination (targeted defaunation) from the rumen could reduce methane production without affecting feed degradation.  相似文献   

6.
Association of methanogenic bacteria with rumen protozoa   总被引:6,自引:0,他引:6  
Methanogenic bacteria superficially associated with rumen entodiniomorphid protozoa were observed by fluorescence microscopy. A protozoal suspension separated from strained rumen fluid (SRF) by gravity sedimentation exhibited a rate of methane production six times greater (per millilitre) than SRF. The number of protozoa (per millilitre) in the protozoal suspension was three times greater than that of SRF; however, the urease activity of this fraction was half that of SRF. The methanogenic activity of SRF and the discrete fractions obtained by sedimentation of protozoa correlated with the numbers of protozoa per millilitre in each fraction. Gravity-sedimented protozoa, washed four times with cell-free rumen fluid, retained 67-71% of the recoverable methanogenic activity. Thus it is evident from our observations that many methanogens adhere to protozoa and that the protozoa support methanogenic activity of the attached methanogens. When protozoa-free sheep were inoculated with rumen contents containing a complex population of protozoa, methanogenic activity of the microflora in SRF samples was not significantly enhanced.  相似文献   

7.
Some rumen ciliates have endosymbiotic methanogens   总被引:16,自引:0,他引:16  
Abstract Most of the small ciliate protozoa, including Dasytricha ruminantium and Entodinium spp. living in the rumen of sheep, were found to have intracellular bacteria. These bacteria were not present in digestive vacuoles. They showed characteristic coenzyme F420 autofluorescence and they were detected with a rhodamine-labelled Archaea-specific oligonucleotide probe. The measured volume percent of autofluorescing bacteria (1%) was close to the total volume of intracellular bacteria estimated from TEM stereology. Thus it is likely that all of the bacteria living in the cytoplasm of these ciliates were endosymbiotic methanogens, using H2 evolved by the host ciliate to form methane. Intracellular methanogens appear to be much more numerous than those attached to the external cell surface of ciliates.  相似文献   

8.
Non-lactating dairy cattle were transitioned to a high-concentrate diet to investigate the effect of ruminal pH suppression, commonly found in dairy cattle, on the density, diversity, and community structure of rumen methanogens, as well as the density of rumen protozoa. Four ruminally cannulated cows were fed a hay diet and transitioned to a 65% grain and 35% hay diet. The cattle were maintained on an high-concentrate diet for 3 weeks before the transition back to an hay diet, which was fed for an additional 3 weeks. Rumen fluid and solids and fecal samples were obtained prior to feeding during weeks 0 (hay), 1, and 3 (high-concentrate), and 4 and 6 (hay). Subacute ruminal acidosis was induced during week 1. During week 3 of the experiment, there was a significant increase in the number of protozoa present in the rumen fluid (P = 0.049) and rumen solids (P = 0.004), and a significant reduction in protozoa in the rumen fluid in week 6 (P = 0.003). No significant effect of diet on density of rumen methanogens was found in any samples, as determined by real-time PCR. Clone libraries were constructed for weeks 0, 3, and 6, and the methanogen diversity of week 3 was found to differ from week 6. Week 3 was also found to have a significantly altered methanogen community structure, compared to the other weeks. Twenty-two unique 16S rRNA phylotypes were identified, three of which were found only during high-concentrate feeding, three were found during both phases of hay feeding, and seven were found in all three clone libraries. The genus Methanobrevibacter comprised 99% of the clones present. The rumen fluid at weeks 0, 3, and 6 of all the animals was found to contain a type A protozoal population. Ultimately, high-concentrate feeding did not significantly affect the density of rumen methanogens, but did alter methanogen diversity and community structure, as well as protozoal density within the rumen of nonlactating dairy cattle. Therefore, it may be necessary to monitor the rumen methanogen and protozoal communities of dairy cattle susceptible to depressed pH when methane abatement strategies are being investigated.  相似文献   

9.
Aims: To determine the in‐vitro effect and mode of action of tea saponin on the rumen microbial community and methane production. Methods and Results: Saponin extracted from tea seeds was added to (1) an in‐vitro fermentation inoculated with rumen fluid and (2) a pure culture of Methanobrevibacter ruminantium. Methane production and expression of the methyl coenzyme‐M reductase subunit A (mcrA) were monitored in both cultures. Abundance of methanogens, protozoa, rumen fungi and cellulolytic bacteria were quantified using real‐time PCR, and bacterial diversity was observed using denaturing gradient gel electrophoresis. Addition of tea saponin significantly reduced methane production and mcrA gene expression in the ruminal fermentation but not with the pure culture of M. ruminantium. The abundance of protozoa and fungi were significantly decreased 50% and 79% respectively but methanogen numbers were not affected, and Fibrobacter succinogenes increased by 41%. Bacterial diversity was similar in cultures with or without tea saponin. Conclusions: Tea saponin appeared to reduce methane production by inhibiting protozoa and presumably lowering methanogenic activity of protozoal‐associated methanogens. Significance and Impact of the Study: Tea saponin may be useful as a supplement to indirectly inhibit methane production in ruminants without a deleterious effect on rumen function.  相似文献   

10.
1. Choline, which is present in the diet of the sheep either in the non-esterified form or combined in phospholipids, is rapidly degraded in the rumen. The ultimate product formed from the N-methyl groups is methane. 2. Analysis of the non-esterified choline and the phosphatidylcholine in ruminal and abomasal digesta indicate that the phospholipid is the main vehicle for the passage of choline to the lower digestive tract. 3. The concentration of phosphatidylcholine in abomasal digesta is lower than that of ruminal digesta, which is in line with a selective retention of protozoa in the rumen as observed by others. 4. On defaunation of the rumen to remove ciliated protozoa the concentration of phosphatidylcholine in ruminal digesta falls markedly and becomes lower than that in abomasal digesta. 5. Calculation shows that the adult sheep obtains at most only about 20--25 mg of effective choline per day from its diet (0.002--0.0025% of dietary total dry-weight intake). This is some fifty times less than the minimum required to avoid pathological lesions and death in other species investigated (0.1%+ of dietary dry-weight intake). 6. Sheep liver can synthesize choline from [14C]ethanolamine both in vitro and in vivo, but the synthesis of choline per kg body weight is many times less than it is in the rat. 7. The intact sheep oxidizes an injected dose of [1,2-14C]choline to CO2 at a rate that is several times less than that observed for the rat. This could help to explain the apparent minimal requirement of sheep for dietary choline.  相似文献   

11.
The population of anaerobic fungi in the rumen of sheep was reduced by the addition of tetronasin (an ionophore antibiotic) to a herbage diet. Fungi were reduced to undetectable levels (< 1 fungal zoospore per ml rumen fluid) by the combined addition of tetronasin and cycloheximide (a protein synthesis inhibitor) and the absence of fungi was maintained with low levels of tetronasin. Sheep with fungi present in the rumen ate 40% more of a straw-based diet (with a fibre digestibility in vivo of 51%) than they ate when without fungi (47% fibre digestibility). Counts of total viable bacteria, cellulolytic bacteria and ciliate protozoa in the rumen were not significantly different when anaerobic fungi were either present or absent.  相似文献   

12.
The influence of insulin (17.4 nmol l-1) on total gas and methane production, the concentration of total and individual fatty acids and dry matter degradability was investigated in the rumen ciliate culture of Entodinium caudatum. The experimental groups consisted of control group (without insulin) and two groups with insulin application--single shot and long-term application (over 30 days). Fermentation activity of each experimental group was observed on two subgroups: whole protozoan culture (protozoa plus bacteria) and bacterial fraction (bacteria without protozoa). Long-term application of insulin significantly increased methane production and DM degradability in the whole protozoan culture. Total VFA concentration was significantly increased by long-term as well as single-dose application of insulin (by 255% and 158%, respectively). The growth of the protozoa was not influenced by insulin treatments. It can be concluded that the fermentation activity of the community of the rumen ciliate Entodinium caudatum culture was marked stimulated by application of insulin.  相似文献   

13.
Microbial ecosystem and methanogenesis in ruminants   总被引:1,自引:0,他引:1  
Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2 and CO2 as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen ('H2' from this point on) is the key element that drives methane production in the rumen. Among H2 producers, protozoa have a prominent position, which is strengthened by their close physical association with methanogens, which favours H2 transfer from one to the other. A strong positive interaction was found between protozoal numbers and methane emissions, and because this group is possibly not essential for rumen function, protozoa might be a target for methane mitigation. An important function that is associated with production of H2 is the degradation of fibrous plant material. However, not all members of the rumen fibrolytic community produce H2. Increasing the proportion of non-H2 producing fibrolytic microorganisms might decrease methane production without affecting forage degradability. Alternative pathways that use electron acceptors other than CO2 to oxidise H2 also exist in the rumen. Bacteria with this type of metabolism normally occupy a distinct ecological niche and are not dominant members of the microbiota; however, their numbers can increase if the right potential electron acceptor is present in the diet. Nitrate is an alternative electron sinks that can promote the growth of particular bacteria able to compete with methanogens. Because of the toxicity of the intermediate product, nitrite, the use of nitrate has not been fully explored, but in adapted animals, nitrite does not accumulate and nitrate supplementation may be an alternative under some dietary conditions that deserves to be further studied. In conclusion, methanogens in the rumen co-exist with other microbes, which have contrasting activities. A better understanding of these populations and the pathways that compete with methanogenesis may provide novel targets for emissions abatement in ruminant production.  相似文献   

14.
AIMS: To assess the effect of presence or absence of rumen protozoa on fermentation characteristics and enzyme profile in growing lambs. METHODS AND RESULTS: Weaner lambs (G1, G2, G3, G4, G5 and G6 groups) were defaunated by oral administration of sodium laurel sulphate (at 8 g 100 kg(-1) body weight). The lambs of G4, G5 and G6 groups were refaunated. The roughage and concentrate ratio in the diet of G1 and G4, G2 and G5, and G3 and G6 were 50:50 (R1), 65:35 (R2) and 80:20 (R3), respectively. Daily dry matter intake was similar in defaunated and faunated lambs. However, digestibility of organic matter (OM), cellulose and gross energy were lower in defaunated lambs while crude protein (CP) digestibility was similar in both defaunated and faunated lambs. The rumen pH and NH3-N were lower (P < 0.01) while TVFA, total-N and TCA-ppt-N were higher (P < 0.01), in defaunated lambs. Ruminal activity of carboxymethyl cellulase was lower (P < 0.01) in defaunated lambs and amylase, xylanase, protease and urease were similar in faunated and defaunated lambs. Nutrient utilization, rumen metabolites and ciliate protozoal count were higher, whereas digestibility of fibre fractions was lower in high rather than low concentrate fed lambs. The rumen protozoa present before defaunation were B-type and the protozoa which re-established on refaunation were also B-type. CONCLUSIONS: Absence of ciliate protozoa decreased nutrient digestibility and increased ruminal TVFA and total-N with lower NH3-N concentration, indicating better energy and protein utilization in defaunated lambs. SIGNIFICANCE AND IMPACT OF THE STUDY: Defaunation improved energy and protein utilization in lambs.  相似文献   

15.
The quantitative importance of individual ciliate species and their interaction in the rumen is still unclear. The present study was performed to test whether there are species differences in the influence on ruminal fermentation in vivo and if combinations of ciliates act additive in that respect. Six adult wethers fed a hay-concentrate diet were defaunated, then refaunated either with Entodinium caudatum (EC), Epidinium ecaudatum (EE) or Eudiplodinium maggii (EM) alone, then progressively with all possible species combinations. Feed, faeces, urine, ruminal fluid and gas were sampled for eight days always after at least 21 days of adaptation. With a linear mixed model, accounting for the 2 × 2 × 2 full factorial study design, mean marginal effect sizes, i.e., the magnitude of change in variables as caused by the presence of each ciliate species or of combinations of them, were estimated. The apparent digestibility of organic matter and neutral detergent fibre remained unaffected. The apparent N digestibility increased by 0.054 with EM (0.716 with defaunation). Ruminal ammonia increased by 1.6, 4.0 and 8.7 mmol/l in the presence of EM, EC and EE, respectively, compared to defaunation (6.9 mmol/l). In the EM + EE combination, ruminal ammonia was lower than would have been expected from an additive effect. With EE, total short-chain fatty acids increased by 23 mmol/l (100 mmol/l with defaunation), but not when EE was combined with EM. The acetate-to-propionate ratio decreased by 0.73 units in the presence of EE (4.0 with defaunation), but only when EE was the sole ciliate species in the rumen. In the presence of any ciliate species, the 16S rDNA copies of total Bacteria and major fibrolytic species decreased to 0.52- and 0.22-fold values, respectively of that found without protozoa. Total Archaea were unaffected; however, Methanobacteriales copies increased 1.44-fold with EC. The CH4-to-CO2 ratio of ruminal gas decreased by 0.036 with EM and 0.051 with EE (0.454 with defaunation). In conclusion, individual ciliates affected ruminal fermentation differently and, when different species were combined, sometimes in a non-additive manner. From the ciliates investigated, EE affected ruminal fermentation most and might play a dominant role in mixed ciliate populations.  相似文献   

16.
Cultures of Streptococcus bovis and mixed populations of rumen bacteria were used to investigate the concentration of ATP and rumen bacterial numbers at various stages of growth. ATP, extracted with Tris buffer, was analyzed using the firefly luciferin-luciferase bioluminescent reaction. ATP concentrations of S. bovis and mixed cultures of rumen bacteria significantly correlated with live cell counts during the log phase of growth but not during the stationary phase. The average cellular ATP concentration of rumen bacteria was calculated to be 0.3 fg of ATP per cell. Studies done with in vivo artificial rumen apparatus revealed that the protozoal contribution to rumen fluid ATP pool size was much more substantial than was the bacterial contribution. The rumen fluid ATP concentration was greater in cattle with protozoa than in those that were defaunated. Differences in ATP concentration due to size differences of ciliate protozoa were observed. Due to the unbalanced distribution of ATP in rumen microbes, ATP appears to be an unsuitable indicator of rumen microbial biomass.  相似文献   

17.
瘤胃甲烷调控方法评述   总被引:2,自引:0,他引:2  
反刍动物释放的甲烷不仅消耗6%~10%的能量摄入,而且是重要的温室效应气体。过去20多年以来,研究人员围绕瘤胃甲烷生成及其调控展开了大量的研究,目前采取的主要措施包括:(1)提供电子释放新途径;(2)利用疫苗、生物控制剂(噬菌体和细菌素)以及化学抑制剂等抑制产甲烷菌,以及(3)去原虫、添加植物提取物或有机酸等促进产乙酸菌增加,降低产甲烷菌可利用的氢。瘤胃生态系统是一个复杂的生态系统,能够将复杂碳水化合物转化成为挥发性脂肪酸,这个过程部分依赖于甲烷的生成和氢的消耗。因此,虽然各种调控措施能够在短期内抑制甲烷生成,但瘤胃微生态系统能够恢复原有的甲烷生成水平,这表明我们对瘤胃中氢代谢仍然认识不足。进一步提高对瘤胃内氢和甲烷生成的微生物生化机制的了解,有助于我们找到有效的甲烷调控措施。  相似文献   

18.
The successful cultivation of the anaerobic ciliate Dasytricha ruminantium is described. The cultures were established in a salts medium containing 30% clarified rumen fluid. Sucrose and extract of rumen holotrich protozoa were fed once daily for 2 to 4 hr, and Dasytricha was then transferred to medium free from these nutrients. Rumen fluid was essential. Omission of protozoal extract resulted in gradual death of the ciliates. Bovine serum satisfactorily substituted for the protozoal extract, but various rumen bacteria, extract of rumen bacteria, and extracts of plant materials could not. There was a positive correlation between formation of methane in the cultures and growth of the ciliates. It is possible that methane bacteria were ingested, but it is not excluded that survival of both dasytrichs and the methanogenic bacteria depended on a low redox potential of the medium.  相似文献   

19.
瘤胃甲烷菌及甲烷生成的调控   总被引:18,自引:0,他引:18  
甲烷菌属于古细菌 ,参与有机物的厌氧降解 ,生成甲烷。反刍动物瘤胃内甲烷的生成损耗 2 %~ 12 %的饲料能量 ,并且通过嗳气排入大气。甲烷不仅是温室气体之一 ,而且还会破坏大气臭氧层。每年全球反刍动物排放大量的甲烷 ,减少瘤胃内甲烷的生成对提高饲料能量利用率和改善环境具有重要意义。近年来 ,有关瘤胃甲烷菌及甲烷生成调控的报道日益增多。概述甲烷菌的特性以及瘤胃内甲烷生成的途径 ,综述甲烷生成的调控手段 ,主要包括去原虫、日粮配合、添加电子受体、增加乙酸生成菌等方法  相似文献   

20.
A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance−covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=−30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号