首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The inflorescence meristem produces floral primordia that remain undifferentiated during the first stages of flower development. Genes controlling floral meristem identity include LEAFY (LFY), APETALA1 (AP1), CAULIFLOWER (CAL), LATE MERISTEM IDENTITY 1 (LMI1), SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE24 (AGL24). The lfy mutant shows partial reversions of flowers into inflorescence shoot-like structures and this phenotype is enhanced in the lfy ap1 double mutant. Here we show that combining the lfy mutant with agl24 and svp single mutants or with the agl24 svp double mutant enhances the lfy phenotype and that the lfy agl24 svp triple mutant phenocopies the lfy ap1 double mutant. Analysis of the molecular interactions between LFY, AGL24 and SVP showed that LFY is a repressor of AGL24 and SVP, whereas LMI1 is a positive regulator of these genes. Moreover, AGL24 and SVP positively regulate AP1 and LFY by direct binding to their regulatory regions. Since all these genes are important for establishing floral meristem identity, regulatory loops are probably important to maintain the correct relative expression levels of these genes.  相似文献   

2.
3.
The formation of flowers starts when floral meristems develop on the flanks of the inflorescence meristem. In Arabidopsis the identity of floral meristems is promoted and maintained by APETALA1 (AP1) and CAULIFLOWER (CAL). In the ap1 cal double mutant the meristems that develop on the flanks of the inflorescence meristem are unable to establish floral meristem identity and develop as inflorescence meristems on which new inflorescence meristems subsequently proliferate. We demonstrate in contrast to previous models that AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) are also floral meristem identity genes since the ap1-10 agl24-2 svp-41 triple mutant continuously produces inflorescence meristems in place of flowers. Furthermore, our results explain how AP1 switches from a floral meristem identity factor to a component that controls floral organ identity.  相似文献   

4.
The developmental roles of AGL15 and AGL18, members of the AGL15-like clade of MADS domain regulatory factors, have not been defined previously. Analysis of transgenic Arabidopsis plants showed that overexpression of AGL18 produces the same phenotypic changes as overexpression of AGL15, and the two genes have partially overlapping expression patterns. Functional redundancy was confirmed through analysis of loss-of-function mutants. agl15 agl18 double mutants, but not single mutants, flower early under non-inductive conditions, indicating that AGL15 and AGL18 act in a redundant fashion as repressors of the floral transition. Further genetic analyses and expression studies were used to examine the relationship between AGL15 and AGL18 activity and other regulators of the floral transition. AGL15 and AGL18 act upstream of the floral integrator FT, and a combination of agl15 and agl18 mutations partially suppresses defects in the photoperiod pathway. agl15 agl18 mutations show an additive relationship with mutations in genes encoding other MADS domain floral repressors, and further acceleration of flowering is seen in triple and quadruple mutants under both inductive and non-inductive conditions. Thus, flowering time is determined by the additive effect of multiple MADS domain floral repressors, with important contributions from AGL15 and AGL18.  相似文献   

5.
Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and floral meristem determinacy. In the flower of mfo1 mutants, the identities of palea and lodicule are disturbed, and mosaic organs were observed. Furthermore, the determinacy of the floral meristem was lost, and extra carpels or spikelets developed in mfo1 florets. The expression patterns of floral MADS box genes were disturbed in the mutant florets. Suppression of another rice AGL6-like gene, MADS17, caused no morphological abnormalities in the wild-type background, but it enhanced the phenotype in the mfo1 background, indicating that MADS17 has a minor but redundant function with that of MFO1. Whereas single mutants in either MFO1 or the SEPALLATA-like gene LHS1 showed moderate phenotypes, the mfo1 lhs1 double mutant showed a severe phenotype, including the loss of spikelet meristem determinacy. We propose that rice AGL6-like genes help to control floral organ identity and the establishment and determinacy of the floral meristem redundantly with LHS1.  相似文献   

6.
Diverse roles for MADS box genes in Arabidopsis development.   总被引:17,自引:1,他引:16       下载免费PDF全文
Members of the MADS box gene family play important roles in flower development from the early step of determining the identity of floral meristems to specifying the identity of floral organ primordia later in flower development. We describe here the isolation and characterization of six additional members of this family, increasing the number of reported Arabidopsis MADS box genes to 17. All 11 members reported prior to this study are expressed in flowers, and the majority of them are floral specific. RNA expression analyses of the six genes reported here indicate that two genes, AGL11 and AGL13 (AGL for AGAMOUS-like), are preferentially expressed in ovules, but each has a distinct expression pattern. AGL15 is preferentially expressed in embryos, with its onset at or before the octant stage early in embryo development. AGL12, AGL14, and AGL17 are all preferentially expressed in root tissues and therefore represent the only characterized MADS box genes expressed in roots. Phylogenetic analyses showed that the two genes expressed in ovules are closely related to previously isolated MADS box genes, whereas the four genes showing nonfloral expression are more distantly related. Data from this and previous studies indicate that in addition to their proven role in flower development, MADS box genes are likely to play roles in many other aspects of plant development.  相似文献   

7.
Multiple factors, including the MADS-domain proteins AGAMOUS-LIKE15 (AGL15) and AGL18, contribute to the regulation of the transition from vegetative to reproductive growth. AGL15 and AGL18 were previously shown to act redundantly as floral repressors and upstream of FLOWERING LOCUS T (FT) in Arabidopsis (Arabidopsis thaliana). A series of genetic and molecular experiments, primarily focused on AGL15, was performed to more clearly define their role. agl15 agl18 mutations fail to suppress ft mutations but show additive interactions with short vegetative phase (svp) mutations in ft and suppressor of constans1 (soc1) backgrounds. Chromatin immunoprecipitation analyses with AGL15-specific antibodies indicate that AGL15 binds directly to the FT locus at sites that partially overlap those bound by SVP and FLOWERING LOCUS C. In addition, expression of AGL15 in the phloem effectively restores wild-type flowering times in agl15 agl18 mutants. When agl15 agl18 mutations are combined with agl24 svp mutations, the plants show upward curling of rosette and cauline leaves, in addition to early flowering. The change in leaf morphology is associated with elevated levels of FT and ectopic expression of SEPALLATA3 (SEP3), leading to ectopic expression of floral genes. Leaf curling is suppressed by sep3 and ft mutations and enhanced by soc1 mutations. Thus, AGL15 and AGL18, along with SVP and AGL24, are necessary to block initiation of floral programs in vegetative organs.Appropriate timing of the shift from vegetative to reproductive growth is an important determinant of plant fitness. The time at which a plant flowers is determined through integration of signals reflecting extrinsic and intrinsic conditions, such as photoperiod, the duration of cold, plant health, and age (for review, see Amasino, 2010). One of the most important pathways regulating the timing of the floral transition is the photoperiod pathway (for review, see Imaizumi and Kay, 2006). Under long-day (LD) inductive conditions in Arabidopsis (Arabidopsis thaliana), photoperiod pathway components act to promote flowering by inducing CONSTANS (CO) and downstream genes. The floral integrator FLOWERING LOCUS T (FT) is a major target of multiple flowering pathways and the photoperiod pathway in particular. It is directly activated by CO (Samach et al., 2000). Under LD conditions, the peak of CO expression is coincident with the presence of light, and CO activates FT expression in the leaf vascular system (Yanovsky and Kay, 2003). FT travels through the phloem to the shoot apex (Corbesier et al., 2007), where, together with FLOWERING LOCUS D (Abe et al., 2005; Wigge et al., 2005), it activates APETALA1 (AP1) and other floral meristem identity genes, starting the flowering process. Other flowering time pathways converge on FT and/or directly impact gene expression in the meristem. The changes in gene expression that accompany the floral transition must be rapid, robust, largely irreversible, and strictly controlled spatially. This is achieved through positive feed-forward and negative feedback loops involving multiple regulatory factors (for recent review, see Kaufmann et al., 2010).Members of the MADS-box family of regulatory factors are central players in the regulatory loops controlling the floral transition (for a recent review, see Smaczniak et al., 2012a). MADS-domain factors typically act in large multimeric complexes and are well suited for regulation that involves combinatorial action. During the floral transition, MADS-domain proteins can act either as repressors or activators. In Arabidopsis, important floral repressors include SHORT VEGETATIVE PHASE (SVP) and members of the FLOWERING LOCUS C (FLC)-like group, including FLC, FLOWERING LOCUS M (FLM)/MADS AFFECTING FLOWERING1 (MAF1), and MAF2 to MAF5. Promoters of flowering include such MADS-domain factors as SUPPRESSOR OF CONSTANS1 (SOC1) and AGAMOUS-LIKE24 (AGL24). Together with non-MADS-box proteins FT and TWIN SISTER OF FT, SOC1 and AGL24 function as floral integrators. These operate downstream of the flowering time pathways but upstream of the meristem identity regulators such as LEAFY (LFY) and the MADS-domain factor AP1.The MADS-domain factors AGL15 and AGL18 also contribute to regulation of the floral transition in Arabidopsis. While single mutants have no phenotype, agl15 agl18 double mutants flower earlier than the wild type (Adamczyk et al., 2007). Therefore, AGL15 and AGL18 appear to act in a redundant fashion in seedlings, and like SVP, FLC, and MAF1 to MAF5, they act as floral repressors. The contributions of AGL15 and AGL18 are most apparent in the absence of strong photoperiodic induction: the agl15 agl18 double mutant combination partially suppresses the delay in flowering observed in co mutants, as well as the flowering delay associated with growth under short-day (SD) noninductive conditions. The earlier flowering in agl15 agl18 mutants under these conditions is associated with up-regulation of FT, and both AGL15 and AGL18 are expressed in the vascular system and shoot apex of young seedlings (Adamczyk et al., 2007), raising the possibility that AGL15 and AGL18 act directly on FT in leaves, as well as other targets in the meristem.AGL15, and to a lesser extent AGL18, have been further implicated in the networks that control flowering through molecular studies. Zheng et al. (2009) performed a chromatin immunoprecipitation (ChIP) analysis using AGL15-specific antibodies, tissue derived from embryo cultures, and a tiling array. Floral repressors (SVP and FLC), floral integrators (FT and SOC1), and a microRNA targeting AP2-like factors (miR172a) were identified as possible AGL15 targets (Zheng et al., 2009), suggesting that AGL15 may contribute to regulation through multiple avenues during the floral transition. AGL15 itself is directly bound and activated by AP2, which is both an A-class floral identity gene and a floral repressor (Yant et al., 2010). AGL15 is down-regulated in ap2 mutants, which are early flowering, while AGL18 is the nearest locus to multiple AP2-bound sites (Yant et al., 2010). Both AGL15 and AGL18 were identified as SOC1 targets through ChIP analyses (Immink et al., 2009; Tao et al., 2012). In yeast (Saccharomyces cerevisiae) two-hybrid assays, AGL15 interacts with a number of other MADS-domain proteins (de Folter et al., 2005), and in a one-hybrid study based on the SOC1 promoter, AGL15-SVP, AGL15-AGL24, and AGL15-SOC1 heterodimers were shown to bind to regions containing CArG boxes (Immink et al., 2012). AGL18 may act redundantly to AGL15 in these contexts. However, AGL18 either does not interact or only interacts weakly with other proteins in yeast two-hybrid assays (de Folter et al., 2005; Hill et al., 2008; Causier et al., 2012). It remains to be determined whether this truly reflects weaker or nonredundant in planta interactions or a technical problem in the artificial yeast system.Guided by the knowledge gained about AGL15 targets and interactions from molecular studies, we asked the following question: what is the functional significance of these molecular relationships in the context of the floral transition? We performed a series of genetic experiments combining agl15 agl18 mutations and mutations in interacting factors such as SVP, AGL24, and SOC1, as well as targets such as FT and SOC1. We also performed further molecular experiments focused on AGL15, for which a variety of tools are available. Among other things, we show that AGL15 and AGL18, along with AGL24 and SVP, play a role in blocking expression of the floral MADS-domain factor SEPALLATA3 (SEP3) during the vegetative phase. In the absence of these four factors, reproductive programs are initiated early, and floral genes are expressed in the youngest rosette leaf and cauline leaves.  相似文献   

8.
9.
MADS box genes expressed in developing inflorescences of rice and sorghum   总被引:16,自引:0,他引:16  
With the aim of elucidating the complex genetic system controlling flower morphogenesis in cereals, we have characterized two rice and two sorghum MADS box genes isolated from cDNA libraries made from developing inflorescences. The rice clones OsMADS24 and OsMADS45, which share high homology with the Arabidopsis AGL2 and AGL4 MADS box genes, are expressed in the floral meristem, in all the primordia, and in mature floral organs. High expression levels have also been found in developing kernels. The sorghum clone SbMADS1 is also homologous to AGL2 and AGL4: expression analysis and mapping data suggest that it is the ortholog of OsMADS24. The pattern of expression of SbMADS2, the other sorghum MADS box gene, suggests that it may play a role as a meristem identity gene, as does AP1 in Arabidopsis, to which it shows considerable homology. The four genes have been mapped on a rice RFLP genetic map: the results are discussed in terms of synteny among cereals. Received: 25 April 1996 / Accepted: 29 August 1996  相似文献   

10.
Flowering plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals. In Arabidopsis, the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are activated to play a pivotal role in specifying floral meristems during floral transition. We show here that the emerging floral meristems require AP1 to partly specify their floral identities by directly repressing a group of flowering time genes, including SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1). In wild-type plants, these flowering time genes are normally downregulated in emerging floral meristems. In the absence of AP1, these genes are ectopically expressed, transforming floral meristems into shoot meristems. By post-translational activation of an AP1-GR fusion protein and chromatin immunoprecipitation assays, we further demonstrate the repression of these flowering time genes by induced AP1 activity and in vivo AP1 binding to the cis-regulatory regions of these genes. These findings indicate that once AP1 is activated during the floral transition, it acts partly as a master repressor in floral meristems by directly suppressing the expression of flowering time genes, thus preventing the continuation of the shoot developmental program.  相似文献   

11.
12.
 MADS box genes are likely involved in many different steps of plant development, since their RNAs accumulate in a wide variety of tissues, including roots, stems, leaves, flowers and embryos. In flowers, MADS box genes regulate the early step of specifying floral meristem identity as well as the later step of determining the fate of floral organ primordia. Here we describe the isolation and characterization of a new MADS box gene from Arabidopsis, AGL9. Sequence analyses indicate that AGL9 represents the putative ortholog of the FBP2 and TM5 genes from petunia and tomato, respectively. In situ hybridization analyses show that AGL9 RNA begins to accumulate after the onset of expression of the floral meristem identity genes, but before the activation of the organ identity genes. These data indicate that AGL9 functions early in flower development to mediate between the interaction of these two classes of genes. Later in flower development, AGL9 RNA accumulates in petals, stamens, and carpels, suggesting a role for AGL9 in controlling the development of these organs. Received: 4 May 1997 / Accepted: 14 July 1997  相似文献   

13.
An AP1/AGL9 group of MADS box gene, OMADS1, with extensive homology to the Arabidopsis AGAMOUS-like 6 gene (AGL6) was characterized from orchid (Oncidium Gower Ramsey). OMADS1 mRNA was detected in apical meristem and in the lip and carpel of flower. Yeast two-hybrid analysis indicated that OMADS1 is able to strongly interact with OMADS3, a TM6-like protein that was involved in flower formation and floral initiation in orchid. Transgenic Arabidopsis and tobacco ectopically expressed OMADS1 showed similar novel phenotypes by significantly reducing plant size, flowering extremely early, and losing inflorescence indeterminacy. In addition, homeotic conversion of sepals into carpel-like structures and petals into staminoid structures were also observed in flowers of 35S::OMADS1 Arabidopsis. This result indicated that OMADS1 was involved in floral formation and initiation in transgenic plants. Further analysis indicated that the expression of flowering time genes FT, SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and flower meristem identity genes LEAFY (LFY), APETALA1 (AP1) was significantly up-regulated in 35S::OMADS1 transgenic Arabidopsis plants. Furthermore, ectopic expression of OMADS1 rescued late-flowering phenotype in gi-1, co-3 but not for ft-1 and fwa-1 mutants. These results supported that ectopic expression of OMADS1 influenced flower transition and formation by acting as an activator for FT and SOC1 in Arabidopsis.  相似文献   

14.
MADS box genes in plants consist of MIKC-type and type I genes. While MIKC-type genes have been studied extensively, the functions of type I genes are still poorly understood. Evidence suggests that type I MADS box genes are involved in embryo sac and seed development. We investigated two independent T-DNA insertion alleles of the Arabidopsis thaliana type I MADS box gene AGAMOUS-LIKE61 (AGL61) and showed that in agl61 mutant ovules, the polar nuclei do not fuse and central cell morphology is aberrant. Furthermore, the central cell begins to degenerate before fertilization takes place. Although pollen tubes are attracted and perceived by the mutant ovules, neither endosperm development nor zygote formation occurs. AGL61 is expressed in the central cell during the final stages of embryo sac development. An AGL61:green fluorescent protein–β-glucoronidase fusion protein localizes exclusively to the polar nuclei and the secondary nucleus of the central cell. Yeast two-hybrid analysis showed that AGL61 can form a heterodimer with AGL80 and that the nuclear localization of AGL61 is lost in the agl80 mutant. Thus, AGL61 and AGL80 appear to function together to differentiate the central cell in Arabidopsis. We renamed AGL61 DIANA, after the virginal Roman goddess of the hunt.  相似文献   

15.
16.
We have identified a novel petunia MADS box gene, PETUNIA FLOWERING GENE (PFG), which is involved in the transition from vegetative to reproductive development. PFG is expressed in the entire plant except stamens, roots and seedlings. Highest expression levels of PFG are found in vegetative and inflorescence meristems. Inhibition of PFG expression in transgenic plants, using a cosuppression strategy, resulted in a unique nonflowering phenotype. Homozygous pfg cosuppression plants are blocked in the formation of inflorescences and maintain vegetative growth. In these mutants, the expression of both PFG and the MADS box gene FLORAL BINDING PROTEIN26 (FBP26), the putative petunia homolog of SQUAMOSA from Antirrhinum, are down-regulated. In hemizygous pfg cosuppression plants initially a few flowers are formed, after which the meristem reverts to the vegetative phase. This reverted phenotype suggests that PFG, besides being required for floral transition, is also required to maintain the reproductive identity after this transition. The position of PFG in the hierarchy of genes controlling floral meristem development was investigated using a double mutant of the floral meristem identity mutant aberrant leaf and flower (alf) and the pfg cosuppression mutant. This analysis revealed that the pfg cosuppression phenotype is epistatic to the alf mutant phenotype, indicating that PFG acts early in the transition to flowering. These results suggest that the petunia MADS box gene, PFG, functions as an inflorescence meristem identity gene required for the transition of the vegetative shoot apex to the reproductive phase and the maintenance of reproductive identity.  相似文献   

17.
18.
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 ( SOC1 ) is one of the flowering pathway integrators and regulates the expression of LEAFY ( LFY ), which links floral induction and floral development. However, the mechanism by which SOC1, a MADS box protein, regulates LFY has proved elusive. Here, we show that SOC1 directly binds to the distal and proximal region of the LFY promoter where critical cis -elements are located. Intragenic suppressor mutant analysis shows that a missense mutation in the MADS box of SOC1 causes loss of binding to the LFY promoter as well as suppression of the flowering promotion function. The full-length SOC1 protein locates in the cytoplasm if expressed alone in protoplast transient expression assay, but relocates to the nucleus if expressed with AGAMOUS-LIKE 24 (AGL24), another flowering pathway integrator and a MADS box protein. The domain analysis shows that co-localization of SOC1 and AGL24 is mediated by the MADS box and the intervening region of SOC1. Finally, we show that LFY is expressed only in those tissues where SOC1 and AGL24 expressions overlap. Thus, we propose that heterodimerization of SOC1 and AGL24 is a key mechanism in activating LFY expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号