共查询到20条相似文献,搜索用时 62 毫秒
1.
叙述了东方纯属建立的历史和暗纹东方纯的命名历史。阿部宗明在1952年建议成立东方纯属并以“Fugu”命名时,已于1949年先行在圆纯属(Sphoeroides)下建立了6个亚属。基于亚属与属具有同等有效的地位,根据国际动物命名法规中优先律的原则,应该以1949年建立的亚属之一融缸舭作为东方纯属的学名,而不用“Fugu”这个名称。早在1844年,McCHand根据采自浙江宁波、舟山一带的标本命名了暗纹东方纯,按照国际动物命名法规中优先律的原则,分布于我国长江中下游和近海的暗纹东方纯学名应该恢复为:Takfugu fasciatus(McClland,1844)。纯鱼类已经被列入人类基因组学研究的模式动物,而且一些纯鱼类的国内外贸易量日益增加,有关东方纯属和暗纹东方纯的学名问题应及时正本清源,使其更符合科学研究历史的本来面貌,有利于学术交流。 相似文献
2.
暗纹东方(Takifu guobscurus Abe)俗称江河豚,隶属于统形目、纯科,是一种海江洞游性鱼类。其内脏器官含剧毒,宰杀烹调不慎可致食者于死地,但肉味极为腴美,故民间素有“拼死吃河豚”之说。国外较早开展了东方纯属鱼类的养殖,在从苗种到成鱼的各个生长阶段中,河纯,特别是苗种阶段的同类相残较严重,成为苗种生产的主要限制因素。为探讨河纯同类相残的原因并采取有效防范措施,作者于1995年4月30日至6月20日,在人工培育暗纹东方统苗种期间,对其同类相残的现象进行了观察研究,现将研究结果作如下总结。 相似文献
3.
为了了解菊黄东方鲀(Takifugu flavidus)、暗纹东方鲀(T.obscurus)及其杂交F1代的肌肉营养特征,利用生物化学方法,从每类实验样本中取9尾对其肌肉中的粗蛋白、粗脂肪、水分、粗灰分和氨基酸成分进行了测定和分析。结果显示:(1)杂交F1代在生长方面具有明显的杂交优势,与亲本之间存在着显著差异(P0.05),杂交F1代的体重为其亲本的1.48~1.77倍;(2)杂交F1代肌肉水分含量与其母本含量相近,但粗脂肪含量均较亲本少(P0.05),粗蛋白含量则与亲本差异不显著(P0.05);(3)除色氨酸和胱氨酸外,16种氨基酸均在肌肉样本中被检测到,除甲硫氨酸外,其余15种氨基酸间含量均存在着显著性差异(P0.05)。菊黄东方鲀(♀)×暗纹东方鲀(♂)杂交F1代的总氨基酸含量最高,而暗纹东方鲀(♀)×菊黄东方鲀(♂)F1代总氨基酸含量则介于两亲本之间。对其必需氨基酸总量进行分析发现,菊黄东方鲀与其正反杂交F1代之间均存在显著性差异(P0.05),而暗纹东方鲀与其正反杂交F1代之间差异不显著(P0.05);(4)肌肉营养品质评价结果表明,菊黄东方鲀(♀)×暗纹东方鲀(♂)杂交F1代的鲜味氨基酸含量为26.68%,明显高于双亲样本(菊黄东方鲀22.28%、暗纹东方鲀25.20%),而暗纹东方鲀(♀)×菊黄东方鲀(♂)F1代的鲜味氨基酸总量(23.30%)较其父本偏高,但低于其母本。研究结果表明,杂交东方鲀的肌肉营养综合了双亲的优良特性,特别是是菊黄东方鲀(♀)×暗纹东方鲀(♂)杂交F1代,拥有最高的鲜味氨基酸含量,具有推广价值。 相似文献
4.
5.
该文以四齿鲀科(Tetraodontidae)的暗纹东方鲀(Takifugu obscurus)为对象,采用形态学解剖、X光透视和骨骼神经染色等方法,对其胀气行为的功能形态学进行研究。其结果发现,暗纹东方鲀腹部受到刺激后,口腔小幅高频将水或空气吞咽进入由食道腹壁特化成的气囊里,气囊与消化道的前后结合处由括约肌控制,腹壁肌呈束状,与此同时,高弹性的皮肤、脊柱和神经都会发生相应的位移变化,以保证胀气行为的快速完成。通过对暗纹东方鲀胀气行为及其吸、排水机制的深入了解,为进一步研究胀气行为的神经机理奠定基础,也将会丰富动物警戒逃避行为的理论。 相似文献
6.
以暗纹东方鲀(Takifugu fasciatus)肝的线粒体DNA为模板,参照红鳍东方鲀(T.rubripes)等近源鱼类的线粒体基因组DNA序列,设计合成14对特异引物,进行PCR扩增并测序,首次获得了暗纹东方鲀线粒体基因组全序列。结果表明,暗纹东方鲀线粒体基因组序列全长16 444 bp(GenBank登录号为GQ409967),A+T含量为55.8%,其mtDNA结构与其他脊椎动物相似,由22个tRNA基因、2个rRNA基因、13个蛋白质编码基因和1段819 bp非编码的控制区(D-loop)所组成。蛋白质基因除COⅠ和ND6的起始密码子为GTG、CCT以外,均为典型的起始密码子ATG。ND1、ATPase8、COⅢ、ND4L、ND5、Cyt b使用典型的终止密码子TAA,其他的使用不完全终止密码子。除ND6和tRNAGln、tRNAAla、tRNAAsn、tRNACys、tRNATyr、tRNASer、tRNAGlu、tRNAPro在L-链上编码之外,其余基因均在H-链编码。基因排列顺序与已测定的鲀类一致,这显示了鲀类线粒体基因排列顺序上的保守性。tRNA基因核苷酸长度为64~73nt,预测了22个tRNA基因的二级结构,均呈较为典型的三叶草状。基于19种鲀类mtDNA全序列构建的进化树表明,暗纹东方鲀与红鳍东方鲀、中华东方鲀(T.chinensis)聚成一个姊妹群。结果还支持东方鲀属鱼类为一单系类群。 相似文献
7.
利用相关序列扩增多态性SRAP(Sequence-related amplified polymorphism)分子标记首次对4个暗纹东方鲀(Takifugu obscurus)群体(1个长江捕捞群体、1个放流群体和2个养殖群体)进行了遗传多样性分析。从49对引物组合中筛选出18对扩增条带清晰、稳定的引物组合对4个群体进行扩增,共获得231个位点,其中多态位点数为156个,总多态位点百分率为67.53%。4个群体内多态位点比例为54.98%—58.87%,群体的Nei’s基因多样性指数(H)为0.1992—0.2005,群体Shannon多样性指数(I)为0.2953—0.3016,群体间基因流(Nm)为4.1291。长江捕捞群体的多态位点比例、基因多样性指数、Shannon多样性指数均略高于其他三个群体。采用UPGMA法对4个群体进行聚类分析显示,上海养殖群体单独聚为一类,其余3个群体聚为另一类。AMOVA结果表明遗传变异主要来源于群体内,占总遗传变异的87.40%。以上结果表明,4个暗纹东方鲀群体具有较高的遗传多样性,群体间相似性较大,并且存在一定的基因交流。 相似文献
8.
暗纹东方鲀线粒体COI及其侧翼tRNA基因的克隆与序列分析 总被引:8,自引:0,他引:8
以暗纹东方鲀(Takifugu fasciatus)肝脏的线粒体DNA为模板,按照红鳍东方鲀线粒体DNA序列设计合成特异引物进行PCR扩增,克隆并测定了线粒体细胞色素氧化酶I亚基(COI)及其侧翼tRNA基因的全序列,结果显示,克隆了暗纹东方鲀COI基因1546bp及其5′端上游的tRNATyr基因和3′端下游的tRNASer基因序列共1766bp。用DNA分析软件对暗纹东方鲀与GenBank中10个目13种鱼类的COI序列进行比较分析,显示暗纹东方鲀与这些鱼类的COI基因具有较高的同源性,与同属红鳍东方鲀的同源性最高为97.6%,与同目不同科的矛尾翻车鲀和翻车鲀的同源性为76.5%和75.4%。根据暗纹东方鲀与其他13种鱼的COI基因序列同源性所建立的进化树,与传统的分类地位基本吻合。推定的这二种tRNA的二级结构都具有典型的三叶草型结构。 相似文献
9.
10.
实验比较不同盐度处理对暗纹东方鲀(Takifugu obscurus)的生长、非特异性免疫和抗氧化酶活力的影响。实验设置6、12、18、24和30 5个盐度处理组,淡水组设为对照组。分别在实验的第1、第5、第10、第15、第20、第30、第40和第50天进行取样测定,并进行溶菌酶、碱性磷酸酶、超氧化物歧化酶和过氧化氢酶活力测定。当盐度18时,鱼的生长受影响较小,而在盐度为24和30的高盐度组中鱼体生长受到较大抑制,并且死亡率随着盐度的增加而增高。经盐度处理后,溶菌酶和碱性磷酸酶活力先逐渐增加,在达到最高峰后又逐渐降低,在24和30的高盐度组中,最终酶活力显著低于对照组水平。超氧化物歧化酶和过氧化氢酶的活力也呈现出先增加后降低的趋势,最终保持与对照组相似的水平。结果表明,高盐度(24和30)对暗纹东方鲀的生长、非特异性免疫和抗氧化酶活力均有显著的影响。 相似文献
11.
Jin-Hyoung Kim Hans-Uwe Dahms Jae-Sung Rhee Young-Mi Lee Jehee Lee Kyung-Nam Han Jae-Seong Lee 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2010,151(1):99-106
Glutathione S-transferase (GST; EC 2.5.1.18) plays a critical role in detoxification pathways. In this study, we report cloning and expression of seven genes of the GST family of the pufferfish Takifugu obscurus together with mRNA tissue distribution pattern and time-course of expression in response to exposure to cadmium. At basal levels of tissue expression, GST-Mu is highly expressed in liver compared with other tissues. When fish were exposed to cadmium (5 mg/L for 96 h), expression of GST-MAPEG, GST-Mu, GST-Omega, and GST-Zeta was greatly increased, whereas GST-Alpha and GST-Kappa genes showed no significant response. These findings suggest that gene expression of a number of GST isoforms in T. obscurus is modulated in response to exposure to cadmium. We propose GST-Mu, GST-Theta, and GST-Zeta as candidate biomarkers for heavy metal exposure in this fish. 相似文献
12.
Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1 总被引:2,自引:0,他引:2
Guo Y Cheng H Huang X Gao S Yu H Zhou R 《Biochemical and biophysical research communications》2005,330(3):950-957
Many basic cellular processes are shared across vast phylogenetic distances, whereas sex-determining mechanisms are highly variable between phyla although the existence of two sexes is nearly universal in the animal kingdom. The only molecular similarity in sex determination found so far between phyla is among the fly doublesex, worm mab-3, and vertebrate Dmrt1/DMY, which contain a zinc-finger-like DNA-binding motif, DM domain. Here we report that three isoforms of the zebrafish Dmrt1 were generated in gonads by multiple alternative splicing, which encoded predicted proteins with 267, 246, and 132 amino acids, respectively. By cDNA cloning and genomic structure analysis, we found that there were seven exons of Dmrt1, which were alternatively spliced to generate the Dmrt1 isoforms. Northern blotting analysis revealed that expression of zebrafish Dmrt1 was higher in testis than ovary. Real time fluorescent quantitative RT-PCR indicated that expression of isoform a of Dmrt1 was dominantly higher than those of Dmrt1 b and c. Furthermore, in situ hybridization to gonads sections showed that Dmrt1 was expressed in developing germ cells of both testis and ovary, suggesting that the Dmrt1 gene is not only associated with testis development, but also, may be important in ovary differentiation of zebrafish. 相似文献
13.
Joel Atallah Gerard VurensSetong Mavong Alexa MuttiDon Hoang Artyom Kopp 《Developmental biology》2014
The origin of new morphological structures requires the establishment of new genetic regulatory circuits to control their development, from initial specification to terminal differentiation. The upstream regulatory genes are usually the first to be identified, while the mechanisms that translate novel regulatory information into phenotypic diversity often remain obscure. In particular, elaborate sex-specific structures that have evolved in many animal lineages are inevitably controlled by sex-determining genes, but the genetic basis of sexually dimorphic cell differentiation is rarely understood. In this report, we examine the role of dachshund (dac), a gene with a deeply conserved function in sensory organ and appendage development, in the sex comb, a recently evolved male-specific structure found in some Drosophila species. We show that dac acts during metamorphosis to restrict sex comb development to the appropriate leg region. Localized repression of dac by the sex determination pathway is necessary for male-specific morphogenesis of sex comb bristles. This pupal function of dac is separate from its earlier role in leg patterning, and Dac at this stage is not dependent on the pupal expression of Distalless (Dll), the main regulator of dac during the larval period. Dll acts in the epithelial cells surrounding the sex comb during pupal development to promote sex comb rotation, a complex cellular process driven by coordinated cell rearrangement. Our results show that genes with well-conserved developmental functions can be re-used at later stages in development to regulate more recently evolved traits. This mode of gene co-option may be an important driver of evolutionary innovations. 相似文献
14.
Sayaka Maehiro Akio Takeuchi Junpei Yamashita Towako Hiraki Yukika Kawabata Kiyoshi Nakasone Kohei Hosono Takeshi Usami Bindhu Paul-Prasanth Yoshitaka Nagahama Yoshitaka Oka Kataaki Okubo 《Biochemical and biophysical research communications》2014
In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3–4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits. 相似文献
15.
16.
Tania Tapia Fernando PerichFernando Pardo Graciela PalmaAndrés Quiroz 《Biochemical Systematics and Ecology》2007
Root extracts from 1.5 and 2.5-year-old red clover (Trifolium pratense) were obtained using supercritical fluid extraction (SFE). GC–MS analysis and Kovats indices allowed identification of the volatile compounds as butyl acetate, E-2-hexenal, α-pinene, benzaldehyde, 6-methyl-5-hepten-2-one, limonene, acetophenone, methyl benzoate, nonanal, octanoic acid and decanal. 相似文献
17.
In germ cells, the function of which is to form the next generation, apoptotic cell death occurs during development, as in the case of somatic cells. In this study, we show that Bcl-x knockout heterozygous (Bcl-x(+/-)) mice exhibit severe defects in male germ cells during development. A substantial increase in apoptosis of male germ cells occurs at around embryonic day 13.5 (E13.5) in Bcl-x(+/-) embryos, leading to hypoplasia of postnatal testes and reduced fertility. On the other hand, female germ cells at the same stages do not show discernible differences between wild-type and Bcl-x(+/-) embryos. This phenotype of Bcl-x haploinsufficiency shows that regulation of apoptosis becomes different between the sexes at around the onset of sex differentiation. Through this study, we found that, in wild-type embryos, (1) apoptosis is much more frequent (approximately 10 times) in the male than in female germ cells, and (2) expression of Bcl-xL, but not that of Bax, is higher in female than in male germ cells, at around E13.5. Male fetal germ cells, cultured with gonadal somatic cells in vitro, showed higher frequencies of apoptosis than those cultured without gonadal somatic cells. On the other hand, in the absence of gonadal somatic cells, both male and female fetal germ cells in vitro showed similar frequencies of apoptosis to female fetal germ cells in vivo. Therefore, male germ cell apoptosis, of which the default pathway is similar to that of the female, is likely to be influenced by male gonadal environments. 相似文献
18.
Vasa is a highly conserved ATP-dependent RNA helicase expressed mainly in germ cells. The vasa gene plays a crucial role in the development of germ cell lineage and has become an excellent molecular marker in identifying germ cells in teleosts. However, little is known about the structure and function of the vasa gene in flatfish. In this study, the vasa gene (Csvasa) was isolated and characterized in half-smooth tongue sole (Cynoglossus semilaevis), an economically important flatfish in China. In the obtained 6425-bp genomic sequence, 23 exons and 22 introns were identified. The Csvasa gene encodes a 663-amino acid protein, including highly conserved domains of the DEAD-box protein family. The amino acid sequence also shared a high homology with other teleosts. Csvasa expression was mainly restricted to the gonads, with little or no expression in other tissues. Real-time quantitative polymerase chain reaction analysis revealed that Csvasa expression levels decreased during embryonic and early developmental stages and increased with the primordial germ cell proliferation. A typical sexually dimorphic expression pattern of Csvasa was observed during early development and sex differentiation, suggesting that the Csvasa gene might play a differential role in the proliferation and differentiation of male and female primordial germ cells (PGCs). Csvasa mRNA expression levels in neomales were significantly lower than those in normal males and females, indicating that the Csvasa gene might be implicated in germ cell development after sex reversal by temperature treatment. In addition, medaka (Oryzias latipes) PGCs could be transiently labeled by microinjection of synthesized mRNA containing the green fluorescence protein gene and 3′-untranslated region of Csvasa, which confirmed that the Csvasa gene has the potential to be used as a visual molecular marker of germ cells and laid a foundation for manipulation of PGCs in tongue sole reproduction. 相似文献
19.
Sex in flies: what 'body--mind' dichotomy? 总被引:1,自引:0,他引:1
Sexual behavior in Drosophila results from interactions of multiple neural and genetic pathways. Male-specific fruitless (fruM) is a major component inducing male behaviors, but recent work indicates key roles for other sex-specific and sex-non-specific components. Notably, male-like courtship by retained (retn) mutant females reveals an intrinsic pathway for male behavior independent of fruM, while behavioral differences between males and females with equal levels of fruM expression indicate involvement of another sex-specific component. Indeed, sex-specific products of doublesex (dsxF and dsxM), that control sexual differentiation of the body, also contribute to sexual behavior and neural development of both sexes. In addition, the single product of the dissatisfaction (dsf) gene is needed for appropriate behavior in both sexes, implying additional complexities and levels of control. The genetic mechanisms controlling sexual behavior are similar to those controlling body sexual development, suggesting biological advantages of modifying an intermediate intrinsic pathway in generation of two substantially different behavioral or morphological states. 相似文献
20.
Many studies have shown that morphological diversity among homologous animal structures is generated by the homeotic (Hox) genes. However, the mechanisms through which Hox genes specify particular morphological features are not fully understood. We have addressed this issue by investigating how diverse sensory organ patterns are formed among the legs of the Drosophila melanogaster adult. The Drosophila adult has one pair of legs on each of its three thoracic segments (the T1-T3 segments). Although homologous, legs from different segments have distinct morphological features. Our focus is on the formation of diverse patterns of small mechanosensory bristles or microchaetae (mCs) among the legs. On T2 legs, the mCs are organized into a series of longitudinal rows (L-rows) precisely positioned along the leg circumference. The L-rows are observed on all three pairs of legs, but additional and novel pattern elements are found on T1 and T3 legs. For example, at specific positions on T1 and T3 legs, some mCs are organized into transverse rows (T-rows). Our studies indicate that the T-rows on T1 and T3 legs are established as a result of Hox gene modulation of the pathway for patterning the L-row mC bristles. Our findings suggest that the Hox genes, Sex combs reduced (Scr) and Ultrabithorax (Ubx), establish differential expression of the proneural gene achaete (ac) by modifying expression of the ac prepattern regulator, Delta (Dl), in T1 and T3 legs, respectively. This study identifies Dl as a potential link between Hox genes and the sensory organ patterning hierarchy, providing insight into the connection between Hox gene function and the formation of specific morphological features. 相似文献