首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wenjun Zheng  Han Wen 《Proteins》2020,88(11):1528-1539
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+-activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+-modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+, Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+.  相似文献   

2.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.  相似文献   

3.
Ryanodine receptors (RyRs) are large tetrameric calcium (Ca2 +) release channels found on the sarcoplasmic reticulum that respond to dihydropyridine receptor activity through a direct conformational interaction and/or indirect Ca2 + sensitivity, propagating sarcoplasmic reticulum luminal Ca2 + release in the process of excitation–contraction coupling. There are three human RyR subtypes, and several debilitating diseases are linked to heritable mutations in RyR1 and RyR2 including malignant hypothermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Despite the recent appreciation that many disease-associated mutations within the N-terminal RyRABC domains (i.e., residues 1–559) are located in the putative interfaces mediating tetrameric channel assembly, the precise structural and dynamical consequences of the mutations are not well understood. We used solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography to examine the effect of ARVD2-associated (i.e., R176Q) and CPVT-associated [i.e., P164S, R169Q and delta exon 3 (Δ3)] mutations on the structure and dynamics of RyR2A. Our solution NMR data exposed a mobile α-helix, unique to type 2; further, this α2 helix rescues the β-strand lost in RyR2A Δ3 but remains dynamic in the hot-spot loop (HS-loop) P164S, R169Q and R176Q mutant proteins. Docking of our X-ray crystal/NMR hybrid structure into the RyR1 cryo-electron microscopy map revealed that this RyR2A α2 helix is in close proximity to dense “columns” projecting toward the channel pore. This is in contrast to the HS-loop mutations that cause structural changes largely localized to the intersubunit interface between adjacent ABC domains. Taken together, our data suggest that ARVD2 and CPVT mutations have at least two distinct structural consequences linked to channel dysfunction: perturbation of the HS-loop (i.e., domain A):domain B intersubunit interface and disruption of the communication between the N-terminal region and the channel domain.  相似文献   

4.
Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs) mediate large Ca2+ release events from Ca2+ storage organelles lasting >5 ms. To have such long-lasting Ca2+ efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca2+ Nernst potential in <1 ms. A recent model of ion permeation through a single, open RyR channel is used here to show that the vast majority of this countercurrent is conducted by the RyR itself. Consequently, changes in membrane potential are minimized locally and instantly, assuring maintenance of a Ca2+-driving force. This RyR autocountercurrent is possible because of the poor Ca2+ selectivity and high conductance for both monovalent and divalent cations of these channels. The model shows that, under physiological conditions, the autocountercurrent clamps the membrane potential near 0 mV within ∼150 μs. Consistent with experiments, the model shows how RyR unit Ca2+ current is defined by luminal [Ca2+], permeable ion composition and concentration, and pore selectivity and conductance. This very likely is true of the highly homologous pore of the IP3R channel.  相似文献   

5.
6.
Cyclic ADP-ribose (cADPR), a potent Ca2+ mobilizing intracellular messenger synthesized by CD38, regulates the opening of ryanodine receptors (RyRs). Increases in intracellular Ca2+ concentrations in pancreatic islets, resulting from Ca2+ mobilization from RyRs as well as Ca2+ influx from extracellular sources, are important in insulin secretion by glucose. In the present study, by screening a rat islet cDNA library, we isolated a novel RyR cDNA (the islet-type RyR), which is generated from the RyR2 gene by alternative splicing of exons 4 and 75. When the expression vectors for the islet-type and the authentic RyRs were transfected into HEK293 cells, the islet-type RyR2 as well as the authentic one showed high affinity [3H]ryanodine binding. Intracellular Ca2+ release in the islet-type RyR2-transfected cells was enhanced in the presence of cADPR but not in the authentic RyR2-transfected cells. The islet-type RyR2 mRNA was expressed in a variety of tissues such as in pancreatic islets, cerebrum, and cerebellum, whereas the authentic RyR2 mRNA was predominantly expressed in heart and aorta. These results suggest that the islet-type RyR2 may be an intracellular target for cADPR signaling.  相似文献   

7.

Background

Ca2 + is a ubiquitous and versatile second messenger that transmits information through changes of the cytosolic Ca2 + concentration. Recent investigations changed basic ideas on the dynamic character of Ca2 + signals and challenge traditional ideas on information transmission.

Scope of review

We present recent findings on key characteristics of the cytosolic Ca2 + dynamics and theoretical concepts that explain the wide range of experimentally observed Ca2 + signals. Further, we relate properties of the dynamical regulation of the cytosolic Ca2 + concentration to ideas about information transmission by stochastic signals.

Major conclusions

We demonstrate the importance of the hierarchal arrangement of Ca2 + release sites on the emergence of cellular Ca2 + spikes. Stochastic Ca2 + signals are functionally robust and adaptive to changing environmental conditions. Fluctuations of interspike intervals (ISIs) and the moment relation derived from ISI distributions contain information on the channel cluster open probability and on pathway properties.

General significance

Robust and reliable signal transduction pathways that entail Ca2 + dynamics are essential for eukaryotic organisms. Moreover, we expect that the design of a stochastic mechanism which provides robustness and adaptivity will be found also in other biological systems. Ca2 + dynamics demonstrate that the fluctuations of cellular signals contain information on molecular behavior. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.  相似文献   

8.
Ryanodine receptors (RyR) regulate intracellular Ca2+ release in many cell types and have been implicated in a number of inherited human diseases. Over the past 15 years genetically engineered mouse models have been developed to elucidate the role that RyRs play in physiology and pathophysiology. To date these models have implicated RyRs in fundamental biological processes including excitation-contraction coupling and long term plasticity as well as diseases including malignant hyperthermia, cardiac arrhythmias, heart failure, and seizures. In this review we summarize the RyR mouse models and how they have enhanced our understanding of the RyR channels and their roles in cellular physiology and disease.  相似文献   

9.

Background

The effect of indomethacin (INDO) on Ca2 + mobilization, cytotoxicity, apoptosis and caspase activation and the potential protective effect of quercetin (QUE), resveratrol (RES) and rutin (RUT) were determined in Caco-2 cells.

Methods

Caco-2 cells were incubated with INDO in the presence or absence of QUE, RES or RUT. The concentrations of Ca2 + in the cytosol (Fluo-3 AM) and mitochondria (Rhod-2 AM) were determined as well as the cytotoxicity (MTT reduction and LDH leakage), apoptosis (TUNEL) and caspase-3 and 9 activities.

Results

INDO promoted Ca2 + efflux from the endoplasmic reticulum (ER), resulting in an early, but transient, increment of cytosolic Ca2 + at 3.5 min, followed by a subsequent increment of intra-mitochondrial Ca2 + at 24 min. INDO also induced cytotoxicity, apoptosis, and increased caspase activities and cytochrome c release. All these alterations were prevented by the inhibitors of the IP3R and RyR receptors, 2-Aminoethoxydiphenyl borate (2-APB) and dantrolene. QUE was the most efficient polyphenol in preventing Ca2 + mobilization induced by INDO and all of its consequences including cytotoxicity and apoptosis.

Conclusions

In Caco-2 cells, INDO stimulates ER Ca2 + mobilization, probably through the activation of IP3R and RyR receptors, and the subsequent entry of Ca2 + into the mitochondria. Polyphenols protected the cells against the Ca2 + mobilization induced by INDO and its consequences on cytotoxicity and apoptosis.

General significance

These results confirm the possibility of using polyphenols and particularly QUE for the protection of the gastroduodenal mucosa in subjects consuming NSAIDs.  相似文献   

10.
Calcium (Ca2+)-mediated signaling is fueled by two sources for Ca2+: Ca2+ can enter through Ca2+ channels located in the plasma membrane and can also be released from intracellular stores. In the present study the intracellular Ca2+ release channel/ryanodine receptor (RyR) from zebrafish skeletal muscle was characterized. Two RyR isoforms could be identified using immunoblotting and single-channel recordings. Biophysical properties as well as the regulation by modulators of RyR, ryanodine, ruthenium red and caffeine, were measured. Comparison with other RyRs showed that the zebrafish RyRs have features observed with all RyRs described to date and thus, can serve as a model system in future genetic and physiological studies. However, some differences in the biophysical properties were observed. The slope conductance for both isoforms was higher than that of the mammalian RyR type 1 (RyR1) measured with divalent ions. Also, inhibition by millimolar Ca2+ concentrations of the RyR isoform that is inhibited by high Ca2+ concentrations (teleost α RyR isoform) was attenuated when compared to mammalian RyRs. Due to the widespread expression of RyR these findings have important implications for the interpretation of the role of the RyR in Ca2+ signaling when comparing zebrafish with mammalian physiology, especially when analyzing mutations underlying physiological changes in zebrafish. Received: 15 February 2001/Revised: 1 June 2001  相似文献   

11.
Cytosolic-free Ca2 + plays a crucial role in blood platelet function and is essential for thrombosis and hemostasis. Therefore, cytosolic-free Ca2 + concentration is tightly regulated in this cell. TRPC6 is expressed in platelets, and an important role for this Ca2 + channel in Ca2 + homeostasis has been reported in other cell types. The aim of this work is to study the function of TRPC6 in platelet Ca2 + homeostasis. The absence of TRPC6 resulted in an 18.73% decreased basal [Ca2 +]c in resting platelets as compared to control cells. Further analysis confirmed a similar Ca2 + accumulation in wild-type and TRPC6-deficient mice; however, passive Ca2 + leak rates from agonist-sensitive intracellular stores were significantly decreased in TRPC6-deficient platelets. Biotinylation studies indicated the presence of an intracellular TRPC6 population, and subcellular fractionation indicated their presence on endoplasmic reticulum membranes. Moreover, the presence of intracellular calcium release in platelets stimulated with 1-oleoyl-2-acetyl-sn-glycerol further suggested a functional TRPC6 population located on the intracellular membranes surrounding calcium stores. However, coimmunoprecipitation assay confirmed the absence of STIM1–TRPC6 interactions in resting conditions. This findings together with the absence of extracellular Mn2 + entry in resting wild-type platelets indicate that the plasma membrane TRPC6 fraction does not play a significant role in the maintenance of basal [Ca2 +]c in mouse platelets. Our results suggest an active participation of the intracellular TRPC6 fraction as a regulator of basal [Ca2 +]c, controlling the passive Ca2 + leak rate from agonist-sensitive intracellular Ca2 + stores in resting platelets.  相似文献   

12.
Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.  相似文献   

13.

Background

In recent years, as our understanding of the various roles played by Ca2 + signaling in development and differentiation has expanded, the challenge of imaging Ca2 + dynamics within living cells, tissues, and whole animal systems has been extended to include specific signaling activity in organelles and non-membrane bound sub-cellular domains.

Scope of review

In this review we outline how recent advances in genetics and molecular biology have contributed to improving and developing current bioluminescence-based Ca2 + imaging techniques. Reporters can now be targeted to specific cell types, or indeed organelles or domains within a particular cell.

Major conclusions

These advances have contributed to our current understanding of the specificity and heterogeneity of developmental Ca2 + signaling. The improvement in the spatial resolution that results from specifically targeting a Ca2 + reporter has helped to reveal how a ubiquitous signaling messenger like Ca2 + can regulate coincidental but different signaling events within an individual cell; a Ca2 + signaling paradox that until now has been hard to explain.

General significance

Techniques used to target specific reporters via genetic means will have applications beyond those of the Ca2 + signaling field, and these will, therefore, make a significant contribution in extending our understanding of the signaling networks that regulate animal development. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.  相似文献   

14.
The ryanodine receptors form the calcium release channel in the membrane of the sarcoplasmic reticulum (SR, the main intracellular Ca2+ store). The importance of ryanodine receptors (RyRs) to cardiac pacemaking and rhythmicity is highlighted by more than 69 mutations, RyR mutations, which underlie arrhythmias and sudden cardiac death. Although most of these mutations lie in cytoplasmic domains, they all cause increased RyR activation by Ca2+ in the SR lumen. Presented here is a review of the mechanisms by which cytoplasmic domains of the RyR can determine luminal activation.  相似文献   

15.
Ryanodine receptors (RyRs) are ion channels that regulate muscle contraction by releasing calcium ions from intracellular stores into the cytoplasm. Mutations in skeletal muscle RyR (RyR1) give rise to congenital diseases such as central core disease. The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Here, we report a structural model of the pore-forming region of RyR1. Molecular dynamics simulations show high ion binding to putative pore residues D4899, E4900, D4938, and D4945, which are experimentally known to be critical for channel conductance and selectivity. We also observe preferential localization of Ca2+ over K+ in the selectivity filter of RyR1. Simulations of RyR1-D4899Q mutant show a loss of preference to Ca2+ in the selectivity filter as seen experimentally. Electrophysiological experiments on a central core disease mutant, RyR1-G4898R, show constitutively open channels that conduct K+ but not Ca2+. Our simulations with G4898R likewise show a decrease in the preference of Ca2+ over K+ in the selectivity filter. Together, the computational and experimental results shed light on ion conductance and selectivity of RyR1 at an atomistic level.  相似文献   

16.
The charge translocation associated with sarcoplasmic reticulum (SR) Ca2+ efflux is compensated for by a simultaneous SR K+ influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca2+ equilibrium potential and SR Ca2+ release would cease. The SR K+ trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K+ countercurrent during release. To better define the physiological role of the SR K+ channel, we compared SR Ca2+ transport in saponin-permeabilized cardiomyocytes before and after limiting SR K+ channel function. Specifically, we reduced SR K+ channel conduction 35 and 88% by replacing cytosolic K+ for Na+ or Cs+ (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca2+ reloading, and caffeine-evoked Ca2+ release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K+ (TRIC) channels is not required to support SR Ca2+ release (or uptake). Because K+ enters the SR through RyRs during release, the SR K+ (TRIC) channel most likely is needed to restore trans-SR K+ balance after RyRs close, assuring SR Vm stays near 0 mV.  相似文献   

17.

Aims

We previously reported that fluvoxamine, a selective serotonin reuptake inhibitor with high affinity for the σ1-receptor (σ1R), ameliorates cardiac hypertrophy and dysfunction via σ1R stimulation. Although σ1R on non-cardiomyocytes interacts with the IP3 receptor (IP3R) to promote mitochondrial Ca2 + transport, little is known about its physiological and pathological relevance in cardiomyocytes.

Main methods

Here we performed Ca2 + imaging and measured ATP production to define the role of σ1Rs in regulating sarcoplasmic reticulum (SR)-mitochondrial Ca2 + transport in neonatal rat ventricular cardiomyocytes treated with angiotensin II to promote hypertrophy.

Key finding

These cardiomyocytes exhibited imbalances in expression levels of σ1R and IP3R and impairments in both phenylephrine-induced mitochondrial Ca2 + mobilization from the SR and ATP production. Interestingly, σ1R stimulation with fluvoxamine rescued impaired mitochondrial Ca2 + mobilization and ATP production, an effect abolished by treatment of cells with the σ1R antagonist, NE-100. Under physiological conditions, fluvoxamine stimulation of σ1Rs suppressed intracellular Ca2 + mobilization through IP3Rs and ryanodine receptors (RyRs). In vivo, chronic administration of fluvoxamine to TAC mice also rescued impaired ATP production.

Significance

These results suggest that σ1R stimulation with fluvoxamine promotes SR-mitochondrial Ca2 + transport and mitochondrial ATP production, whereas σ1R stimulation suppresses intracellular Ca2 + overload through IP3Rs and RyRs. These mechanisms likely underlie in part the anti-hypertrophic and cardioprotective action of the σ1R agonists including fluvoxamine.  相似文献   

18.
DOC2B (double-C2 domain) protein is thought to be a high-affinity Ca2 + sensor for spontaneous and asynchronous neurotransmitter release. To elucidate the molecular features underlying its physiological role, we determined the crystal structures of its isolated C2A and C2B domains and examined their Ca2 +-binding properties. We further characterized the solution structure of the tandem domains (C2AB) using small-angle X-ray scattering. In parallel, we tested structure–function correlates with live cell imaging tools. We found that, despite striking structural similarity, C2B binds Ca2 + with considerably higher affinity than C2A. The C2AB solution structure is best modeled as two domains with a highly flexible orientation and no difference in the presence or absence of Ca2 +. In addition, kinetic studies of C2AB demonstrate that, in the presence of unilamellar vesicles, Ca2 + binding is stabilized, as reflected by the ~ 10-fold slower rate of Ca2 + dissociation than in the absence of vesicles. In cells, isolated C2B translocates to the plasma membrane (PM) with an EC50 of 400 nM while the C2A does not translocate at submicromolar Ca2 + concentrations, supporting the biochemical observations. Nevertheless, C2AB translocates to the PM with an ~ 2-fold lower EC50 and to a greater extent than C2B. Our results, together with previous studies, reveal that the C2B is the primary Ca2 + sensing unit in DOC2B, whereas C2A enhances the interaction of C2AB with the PM.  相似文献   

19.

Background

Sleep is a physiological event that directly influences health by affecting the immune system, in which calcium (Ca2 +) plays a critical signaling role. We performed live cell measurements of cytosolic Ca2 + mobilization to understand the changes in Ca2 + signaling that occur in splenic immune cells after various periods of sleep deprivation (SD).

Methods

Adult male mice were subjected to sleep deprivation by platform technique for different periods (from 12 to 72 h) and Ca2 + intracellular fluctuations were evaluated in splenocytes by confocal microscopy. We also performed spleen cell evaluation by flow cytometry and analyzed intracellular Ca2 + mobilization in endoplasmic reticulum and mitochondria. Additionally, Ca2 + channel gene expression was evaluated

Results

Splenocytes showed a progressive loss of intracellular Ca2 + maintenance from endoplasmic reticulum (ER) stores. Transient Ca2 + buffering by the mitochondria was further compromised. These findings were confirmed by changes in mitochondrial integrity and in the performance of the store operated calcium entry (SOCE) and stromal interaction molecule 1 (STIM1) Ca2 + channels.

Conclusions and general significance

These novel data suggest that SD impairs Ca2 + signaling, most likely as a result of ER stress, leading to an insufficient Ca2 + supply for signaling events. Our results support the previously described immunosuppressive effects of sleep loss and provide additional information on the cellular and molecular mechanisms involved in sleep function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号