首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Several Cl channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl > Br > NO3 > I. Single-channel recordings revealed a unit conductance of ~ 40 pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~ − 65 mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~ 20 pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~ + 25 mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253–260).  相似文献   

2.
The net charge of a folded protein is hypothesized to influence myriad biochemical processes (e.g., protein misfolding, electron transfer, molecular recognition); however, few tools exist for measuring net charge and this elusive property remains undetermined—at any pH—for nearly all proteins. This study used lysine-acetyl “protein charge ladders” and capillary electrophoresis to measure the net charge of superoxide dismutase-1 (SOD1)—whose aggregation causes amyotrophic lateral sclerosis (ALS)—as a function of coordinated metal ions and pH. The net negative charge of apo-SOD1 was similar to predicted values; however, the binding of a single Zn2 + or Cu2 + ion reduced the net negative charge by a greater magnitude than predicted (i.e., ~ 4 units, instead of 2), whereas the SOD1 protein underwent charge regulation upon binding 2–4 metal ions. From pH5 to pH8 (i.e., a range consistent with the multiple subcellular loci of SOD1), the holo-SOD1 protein underwent smaller fluctuations in net negative charge than predicted (i.e., ~ 3 units, instead of ~ 14) and did not undergo charge inversion at its isoelectric point (pI = 5.3) but remained anionic. The regulation of SOD1 net charge along its pathways of metal binding, and across solvent pH, provides insight into its metal-induced maturation and enzymatic activity (which remains diffusion-limited across pH5–8). The anionic nature of holo-SOD1 across subcellular pH suggests that ~ 45 different ALS-linked mutations to SOD1 will reduce its net negative charge regardless of subcellular localization.  相似文献   

3.
A new method, based on hollow fiber liquid-phase microextraction (HF-LPME) and gas chromatography–tandem mass spectrometry (GC–MSMS), was developed for determination of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in samples of human hair. Since hair is a solid matrix, the samples were subjected to alkaline digestion using NaOH. The aqueous solutions obtained were extracted using a 6 cm polypropylene fiber (600 μm i.d., 200 μm wall thickness, 0.2 μm pore size) for each extraction. A 25−1 fractional factorial design for screening, and a central composite design for optimization of significant variables, was applied during development of the extraction method. The variables evaluated were the type of extraction solvent, pH, stirring speed, extraction time, and acceptor phase volume. The optimized conditions for the proposed extraction procedure were 10 mg of hair sample; 20 μL of butyl acetate; aqueous (pH 14) donor phase containing 6.8% NaCl; 600 rpm stirring speed; 20 min extraction time. A linear response was obtained in the ranges 1–500 pg mg−1 (CBD and CBN) and 20–500 pg mg−1 (THC), with regression coefficients >0.99. Precision, determined as the relative standard deviation, was 3.3–8.9% (intra-day) and 4.4–13.7% (inter-day). Absolute recoveries varied in the ranges 4.4–4.8% (CBD), 7.6–8.9% (THC) and 7.7–8.2% (CBN). Limits of detection (LOD, S/N = 3) and quantification (LOQ, S/N = 10) were 0.5–15 pg mg−1 and 1–20 pg mg−1, respectively. The method was successfully used to determine CBD, THC and CBN in hair samples from patients in a drug dependency rehabilitation center. Concentrations varied in the ranges 1–18 pg mg−1 (CBD), 20–232 pg mg−1 (THC) and 9–107 pg mg−1 (CBN), confirming the suitability of the method for monitoring studies.  相似文献   

4.
The dependence of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) flip-flop kinetics on the lateral membrane pressure in a phospholipid bilayer was investigated by sum-frequency vibrational spectroscopy. Planar-supported lipid bilayers were prepared on fused silica supports using the Langmuir-Blodgett/Langmuir-Schaeffer technique, which allows precise control over the lateral surface pressure and packing density of the membrane. The lipid bilayer deposition pressure was varied from 28 to 42 mN/m. The kinetics of lipid flip-flop in these membranes was measured by sum-frequency vibrational spectroscopy at 37°C. An order-of-magnitude difference in the rate constant for lipid translocation (10.9 × 10−4 s−1 to 1.03 × 10−4 s−1) was measured for membranes prepared at 28 mN/m and 42 mN/m, respectively. This change in rate results from only a 7.4% change in the packing density of the lipids in the bilayer. From the observed kinetics, the area of activation for native phospholipid flip-flop in a protein-free DPPC planar-supported lipid bilayer was determined to be 73 ± 12 Å2/molecule at 37°C. Significance of the observed activation area and potential future applications of the technique to the study of phospholipid flip-flop are discussed.  相似文献   

5.
A system based on high-performance affinity chromatography was developed for characterizing the binding, elution and regeneration kinetics of immobilized antibodies and immunoaffinity supports. This information was provided by using a combination of frontal analysis, split-peak analysis and peak decay analysis to determine the rate constants for antibody–antigen interactions under typical sample application and elution conditions. This technique was tested using immunoaffinity supports that contained monoclonal antibodies for 2,4-dichlorophenoxyacetic acid (2,4-D). Association equilibrium constants measured by frontal analysis for 2,4-D and related compounds with the immobilized antibodies were 1.7–12 × 106 M−1 at pH 7.0 and 25 °C. Split-peak analysis gave association rate constants of 1.4–12 × 105 M−1 s−1 and calculated dissociation rate constants of 0.01–0.4 s−1 under the application conditions. Elution at pH 2.5 for the analytes from the antibodies was examined by peak decay analysis and gave dissociation rate constants of 0.056–0.17 s−1. A comparison of frontal analysis results after various periods of column regeneration allowed the rate of antibody regeneration to be examined, with the results giving a first-order regeneration rate constant of 2.4 × 10−4 s−1. This combined approach and the information it provides should be useful in the design and optimization of immunoaffinity chromatography and other analytical methods that employ immobilized antibodies. The methods described are not limited to the particular analytes and antibodies employed in this study but should be useful in characterizing other targets, ligands and supports.  相似文献   

6.
The removal of toxic methyl ethyl ketone (MEK) is studied in a lab scale biofilter packed with mixture of coal and matured compost. The biofiltration operation is divided into 5 phases for a period of 60 days followed by shock loading conditions for three weeks. The maximum removal efficiency of 95% is achieved during phase II for an inlet concentration of 0.59 g m−3, and 82–91% for the inlet concentration in the range of 0.45–1.23 g m−3 of MEK during shock loads. The Michaelis–Menten kinetic constants obtained are 0.086 g m−3 h−1 and 0.577 g m−3. The obtained experimental results are validated using Ottengraf–van den Oever model for zero-order diffusion-controlled region to understand the mechanism of biofiltration. The critical inlet concentration of MEK, critical inlet load of MEK and biofilm thickness are estimated using the results obtained from model predictions.  相似文献   

7.
Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo) at 460 nm is observed with rise time of ~ 11 ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680+PheoDI. The subsequent electron transfer from PheoD1 to primary plastoquinone electron acceptor (QA) was accompanied by relaxation of the 460-nm band and occurred within ~ 250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680+ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of PheoDI, which is very similar to that measured earlier by accumulation method. The spectrum of PheoDI formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to PheoD1. According to previous measurements in the femtosecond–picosecond time range this Chl-670 was ascribed to ChlD1 [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45–50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~ 1 ps and ~ 14 ps. These components appear to reflect formation of P680+ChlD1 and P680+PheoD1, respectively, as found earlier. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

8.
One of the most interesting methods for the detoxification of sulfur mustard is enzyme-catalyzed oxidation. This study examined the oxidative destruction of a sulfur mustard by the enzyme chloroperoxidase (EC 1.11.1.10). Chloroperoxidase (CPO) belongs to a group of enzymes that catalyze the oxidation of various organic compounds by peroxide in the presence of a halide ion. The enzymatic oxidation reaction is affected by several factors: pH, presence or absence of chloride ion, temperature, the concentrations of hydrogen peroxide and enzyme and aqueous solubility of the substrate. The optimum reaction conditions were determined by analyzing the effects of all factors, and the following conditions were selected: solvent, Britton–Robinson buffer (pH = 3) with tert-butanol (70:30 v/v); CPO concentration, 16 U/mL; hydrogen peroxide concentration, 40 mmol/L; sodium chloride concentration, 20 mmol/L. Under these reaction conditions, the rate constant for the reaction is 0.006 s−1. The Michaelis constant, a measure of the affinity of an enzyme for a particular substrate, is 1.87 × 10−3 M for this system. The Michaelis constant for enzymes with a high affinity for their substrate is in the range of 10−5 to 10−4 M, so this value indicates that CPO does not have a very high affinity for sulfur mustard.  相似文献   

9.
Large catalase based bioelectrode for biosensor application   总被引:1,自引:0,他引:1  
A large catalase (CAT) (Mr ~ 90 kDa), immobilized on multiwalled carbon nanotubes—Nafion® (MWCNT-NF) matrix and encapsulated with polyethylenimine (PEI) on glassy carbon electrode (GCE), showed a pair of nearly reversible cyclic voltammetric peaks for Fe(III)/Fe(II) couple with formal potential of about −0.45 V (vs. Ag/AgCl electrode at pH 7.5). PEI significantly reduced the charge transfer resistance and stabilized the bioelectrode through electrostatic interaction. The electron transfer rate constant and surface coverage of the immobilized CAT were 1.05 ± 0.2 s−1 and 2.1 × 10−10 mol cm−2, respectively. Studies on electrocatalytic activity and kinetics of GCE/MWCNT-NF/CAT/PEI for hydrogen peroxide (H2O2) showed the apparent Michaelis-Menten constant of 3 mM, linear response in the range of 10 μM to 5 mM, response time of ~ 2 s for steady state current, and detection limit of ~ 1 μM. A high operational and storage stability was also demonstrated for the bioelectrode. Hence, the direct electrochemistry of the large catalase and its potential biosensor application have been established through this investigation.  相似文献   

10.
We tested the ability of saturated n-monocarboxylic acids ranging from eight to 12 carbons in length to self-assemble into vesicles, and determined the minimal concentrations and chain lengths necessary to form stable bilayer membranes. Under defined conditions of pH and concentrations exceeding 150 mM, an unbranched monocarboxylic acid as short as eight carbons in length (n-octanoic acid) assembled into vesicular structures. Nonanoic acid (85 mM) formed stable vesicles at pH 7.0, the pK of the acid in bilayers, and was chosen for further testing. At pH 6 and below, the vesicles were unstable and the acid was present as droplets. At pH ranges of 8 and above clear solutions of micelles formed. However, addition of small amounts of an alcohol (nonanol) markedly stabilized the bilayers, and vesicles were present at significantly lower concentrations (∼20 mM) at pH ranges up to 11. The formation of vesicles near the pKa of the acids can be explained by the formation of stable RCOO…HOOCR hydrogen bond networks in the presence of both ionized and neutral acid functions. Similarly, the effects of alcohols at high pH suggests the formation of stable RCOO…HOR hydrogen bond networks when neutral RCOOH groups are absent. The vesicles provided a selective permeability barrier, as indicated by osmotic activity and ionic dye capture, and could encapsulate macromolecules such as DNA and a protein. When catalase was encapsulated in vesicles of decanoic acid and decanol, the enzyme was protected from degradation by protease, and could act as a catalyst for its substrate, hydrogen peroxide, which readily diffused across the membrane. We conclude that membranous vesicles produced by mixed short chain monocarboxylic acids and alcohols are useful models for testing the limits of stabilizing hydrophobic effects in membranes and for prebiotic membrane formation.  相似文献   

11.
Establishing the origin of electrophoretic mobility of sarcoplasmic reticulum (SR) vesicles is the primary goal of this work. It was found that the electrophoretic mobility originates from ionizable amino acids of cytoplasmic domains of the Ca2+-ATPase, the calcium pump of SR. The mobility was measured at pH 4.0, 4.7, 5.0, 6.0, 7.5, and 9.0 in the region of ionic strength from 0.05 to 0.2 M. Mobility measurements were supplemented by studies of SR vesicles by photoelectron microscopy. The median diameter of SR vesicles was 260 nm. Ca2+-ATPases were not resolved. The mobility data were standardized by interpolation to a reference ionic strength of 0.1 M. The mobility of the SR vesicles is determined by the charge of the Ca2+-ATPase. It is due to the ionizable amino acids selected from the amino acid sequence of SERCA1a Ca2+-ATPase. The pH dependence of charge residing in various domains of Ca2+-ATPase was computed using pKa values in free water. The charge correlated with measured mobility. It was shown that a linear relationship exists between the mobility of the SR vesicles, μ, and the total computed charge, Q, on three cytoplasmic domains of Ca2+-ATPase: A, P, and N. It is given by μ = α + β Q where the fitted values β = (0.043 ± 0.002) × 108 m2 V1 s1 e1 and α = (0.16 ± 0.02) × 108 m2 V1 s1. Since β and α values do not change from pH 4 to pH 9, one concludes that the hydrodynamic friction of the cytoplasmic domains of SR is independent of their charge.  相似文献   

12.
A specific polyclonal antibody targeting diethyl phthalate (DEP) with the higher antibody titer at 1:120,000 has been obtained, and an ultrasensitive and high-throughput direct competitive gold nanoparticles improved real-time immuno-PCR (GNP–rt–IPCR) technique has been developed for detecting DEP in foodstuff samples. Under optimal conditions, a rather low linearity is achieved within a range of 4 pg L−1 to 40 ng L−1, and the limit of detection (LOD) is 1.06 pg L−1. Otherwise, the GNP–rt–IPCR technique is highly selective, with low cross-reactivity values for DEP analogs (<5%). Finally, the concentrations of DEP in foodstuff samples by the GNP–rt–IPCR method range from 0.48 to 41.88 μg kg−1. Satisfactory recoveries (88.39–112.79%) and coefficient of variation values (8.38–12.77%) are obtained. The consistency between the results obtained from GNP–rt–IPCR and gas chromatography–mass spectrometry (GC–MS) is 98.3%, which further proves that GNP–rt–IPCR is an accurate, reliable, rapid, ultrasensitive, and high-throughput method for batch determination of trace amounts of DEP in foodstuff samples.  相似文献   

13.
Utilizing a solid phase extraction column (MCT) containing mixed hydrophilic functional gel and cation exchange sorbent, a sensitive and rapid HPLC–MS/MS method for simultaneously determining the residues of melamine (MEL) and cyanuric acid (CYA) in human foodstuffs was developed. MEL and CYA in egg, pork, liver, kidney and pork, shrimp, sausage casing, honey, soybean milk, soybean powder and dairy product were extracted using acetonitrile/water, defatted with hexane and isolated using MCT solid phase extraction column. The residues were separated upon a hydrophilic interaction liquid chromatography (HILIC) column and analyzed by electrospray ionization under negative–positive switched mode on a triplequadrupole mass spectrometry. The selected reaction monitoring was performed on [M+H]+ of m/z 127.9 to provide the transition of 127 > 85 and 127 > 68 (MEL) while the [M−H] of m/z 127.1 was selected as the precursor ion for CYA resulting in product ions m/z 85 and 42. Isotope labeled internal standard (15N3-MEL and 13C3-CYA) and matrix-matched calibration were both used to observe the recovery to be 70.0–129.6% and 70.0–128.9% with RSD of 1.4–23.3% and 1.5–21.7% for MEL and CYA, respectively (n = 6). All the LODs and LOQs of MEL and CYA were less than 39.4 and 99.1 μg kg−1, respectively, in 18 matrices, which were sensitive enough for quantitative analysis. This method has been proven effective in simultaneous determination of melamine and cyanuric acid when inspecting unknown and positive samples.  相似文献   

14.
Influenza A virus M2 protein is known to form acid-activated, proton-selective, amantadine-sensitive channels. We directly measured proton uptake in vesicles containing reconstituted M2 by monitoring external pH after addition of valinomycin to vesicles with 100-fold-diluted external [K+]. External pH typically increased by a few tenths of a pH unit over a few minutes after valinomycin addition, but proton uptake was not significantly altered by acidification. Under neutral conditions, external addition of 1 mM amantadine produced a reduction in flux consistent with randomly ordered channels; however, experimental variation is high with this method and the block was not statistically significant. Amantadine block was reduced at pH 5.4. In accord with Lin and Schroeder's study of reconstituted M2 using a pH-sensitive dye to monitor intravesicular pH, we conclude that bath pH weakly affects or does not significantly affect proton flow in the pH range 5.4-7.0 for the reconstituted system, contrary to results from electrophysiological studies. Theoretical analysis of the relaxation to Donnan equilibrium utilized for such vesicle uptake assays illuminates the appropriate timescale of the initial slope and an important limitation that must be placed on inferences about channel ion selectivity. The rise in pH over 10 s after ionophore addition yielded time-averaged single-channel conductances of 0.35 ± 0.20 aS and 0.72 ± 0.42 aS at pH 5.4 and 7.0, respectively, an order of magnitude lower than previously reported in vesicles. Assuming complete membrane incorporation and tetramerization of the reconstituted protein, such a low time-averaged conductance in the face of previously observed single-channel conductance (6 pS at pH 3) implies an open channel probability of 10−6-10−4. Based on leakage of potassium from M2-containing vesicles, compared to protein-free vesicles, we conclude that M2 exhibits ∼107 selectivity for hydrogen over potassium.  相似文献   

15.
Among natural polymers, starch is one of the most promising biodegradable materials because it is a renewable bioresource that is universally available and of low cost. However, the properties of starch-based materials are not satisfactory. One approach is the use of nano-filler as reinforcement for starch-based materials. In this paper, a nanocomposite is prepared using ZnO nanoparticles stabilized by carboxymethylcellulose sodium (CMC) as the filler in glycerol plasticized-pea starch (GPS) matrix by the casting process. According to the characterization of ZnO–CMC particles with Fourier transform infrared (FTIR), Ultraviolet–visible (UV–vis), X-ray diffraction (XRD), transmission electron microscope (TEM) and thermogravimetric analysis (TG), ZnO (about 60 wt%) is encapsulated with CMC (about 40 wt%) in ZnO–CMC particles with the size of about 30–40 nm. A low loading of ZnO–CMC particles can obviously improve the pasting viscosity, storage modulus, the glass transition temperature and UV absorbance of GPS/ZnO–CMC nanocomposites. When the ZnO–CMC contents vary from 0 to 5 wt%, the tensile yield strength increase from 3.94 MPa to 9.81 MPa, while the elongation at break reduce from 42.2% to 25.8%. The water vapor permeability decrease from 4.76 × 10−10 to 1.65 × 10−10 g m−1 s−1 Pa−1.  相似文献   

16.
Decrease in interstitial pH of the tumor stroma and over-expression of low density lipoprotein (LDL) receptors by several types of neoplastic cells have been suggested to be important determinants of selective retention of photosensitizers by proliferative tissues. The interactions of chlorin e6 (Ce6), a photosensitizer bearing three carboxylic groups, with plasma proteins and DOPC unilamellar vesicles are investigated by fluorescence spectroscopy. The binding constant to liposomes, with reference to the DOPC concentration, is 6 × 103 M− 1 at pH 7.4. Binding of Ce6 to LDL involves about ten high affinity sites close to the apoprotein and some solubilization in the lipid compartment. The overall association constant is 5.7 × 107 M− 1 at pH 7.4. Human serum albumin (HSA) is the major carrier (association constant 1.8 × 108 M− 1 at pH 7.4). Whereas the affinity of Ce6 for LDL and liposomes increases at lower pH, it decreases for albumin. Between pH 7.4 and 6.5, the relative affinities of Ce6 for LDL versus HSA, and for membranes versus HSA, are multiplied by 4.6 and 3.5, respectively. These effects are likely driven by the ionization equilibria of the photosensitizer carboxylic chains. Then, the cellular uptake of chlorin e6 may be facilitated by its pH-mediated redistribution within the tumor stroma.  相似文献   

17.
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium–calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K+ currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6 × 10− 6 M and 3.5 × 10− 6 M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2 × 10− 7 M for rat and 2.5 × 10− 7 M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9–3 × 10− 6 M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1 ~ INCX < IKACh. Therefore, the ability of KB-R7943 to block inward rectifier potassium currents, in particular IKACh, should be taken into account when interpreting the data with this inhibitor from in vivo and in vitro experiments in both mammalian and fish models.  相似文献   

18.
Understanding the structure, folding, and interaction of membrane proteins requires experimental tools to quantify the association of transmembrane (TM) helices. Here, we introduce isothermal titration calorimetry (ITC) to measure integrin αIIbβ3 TM complex affinity, to study the consequences of helix–helix preorientation in lipid bilayers, and to examine protein-induced lipid reorganization. Phospholipid bicelles served as membrane mimics. The association of αIIbβ3 proceeded with a free energy change of − 4.61 ± 0.04 kcal/mol at bicelle conditions where the sampling of random helix–helix orientations leads to complex formation. At bicelle conditions that approach a true bilayer structure in effect, an entropy saving of > 1 kcal/mol was obtained from helix–helix preorientation. The magnitudes of enthalpy and entropy changes increased distinctly with bicelle dimensions, indicating long-range changes in bicelle lipid properties upon αIIbβ3 TM association. NMR spectroscopy confirmed ITC affinity measurements and revealed αIIbβ3 association and dissociation rates of 4500 ± 100 s− 1 and 2.1 ± 0.1 s− 1, respectively. Thus, ITC is able to provide comprehensive insight into the interaction of membrane proteins.  相似文献   

19.
Copolymer particles for removal of endotoxins (lipopolysaccharides, LPSs) were prepared by suspension copolymerization of γ-cyclodextrin (CyD) and 1,6-hexamethylenediisocyanate. The LPS-removing activity of the copolymer particles was compared with that of poly(ε-lysine)-immobilized Cellufine (cationic adsorbent) or polystyrene particles (hydrophobic adsorbent) by a batch method. When DNA was present in solution with LPSs under physiological conditions (pH 6.0, ionic strength of μ = 0.05–0.8), LPS-removing activity of the cationic or hydrophobic adsorbent was unsatisfactory because both the DNA and the LPSs were adsorbed onto each adsorbent. By contrast, the copolymer particles with γ-CyD cavity (CyD content: 14–20 mol%) could selectively remove LPSs from a DNA solution (50 μg ml−1, pH 6.0, and μ = 0.05–0.2) containing LPSs (15 EU ml−1) without the adsorption of DNA. The residual concentration of LPSs in the treated DNA solution was below 0.1 EU ml−1, and the recovery of DNA was 99%.  相似文献   

20.
The aldehyde inhibitor Z-Ala-Ala-Phe-CHO has been synthesized and shown by 13C-NMR to react with the active site serine hydroxyl group of alpha-chymotrypsin to form two diastereomeric hemiacetals. For both hemiacetals oxyanion formation occurs with a pKa value of ~ 7 showing that chymotrypsin reduces the oxyanion pKa values by ~ 5.6 pKa units and stabilizes the oxyanions of both diastereoisomers by ~ 32 kJ mol− 1. As pH has only a small effect on binding we conclude that oxyanion formation does not have a significant effect on binding the aldehyde inhibitor. By comparing the binding of Z-Ala-Ala-Phe-CHO with that of Z-Ala-Ala-Phe-H we estimate that the aldehyde group increases binding ~ 100 fold. At pH 7.2 the effective molarity of the active site serine hydroxy group is ~ 6000 which is ~ 7 × less effective than with the corresponding glyoxal inhibitor. Using 1H-NMR we have shown that at both 4 and 25 °C the histidine pKa is ~ 7.3 in free chymotrypsin and it is raised to ~ 8 when Z-Ala-Ala-Phe-CHO is bound. We conclude that oxyanion formation only has a minor role in raising the histidine pKa and that the aldehyde hydrogen must be replaced by a larger group to raise the histidine pKa > 10 and give stereospecific formation of tetrahedral intermediates. The results show that a large increase in the pKa of the active site histidine is not needed for the active site serine hydroxyl group to have an effective molarity of 6000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号