首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dystrophin is essential to skeletal muscle function and confers resistance to the sarcolemma by interacting with cytoskeleton and membrane. In the present work, we characterized the behavior of dystrophin 11-15 (DYS R11-15), five spectrin-like repeats from the central domain of human dystrophin, with lipids. DYS R11-15 displays an amphiphilic character at the liquid/air interface while maintaining its secondary α-helical structure. The interaction of DYS R11-15 with small unilamellar vesicles (SUVs) depends on the lipid nature, which is not the case with large unilamellar vesicles (LUVs). In addition, switching from anionic SUVs to anionic LUVs suggests the lipid packing as a crucial factor for the interaction of protein and lipid. The monolayer model and the modulation of surface pressure aim to mimic the muscle at work (i.e. dynamic changes of muscle membrane during contraction and relaxation) (high and low surface pressure). Strikingly, the lateral pressure modifies the protein organization. Increasing the lateral pressure leads the proteins to be organized in a regular network. Nevertheless, a different protein conformation after its binding to monolayer is revealed by trypsin proteolysis. Label-free quantification by nano-LC/MS/MS allowed identification of the helices in repeats 12 and 13 involved in the interaction with anionic SUVs. These results, combined with our previous studies, indicate that DYS R11-15 constitutes the only part of dystrophin that interacts with anionic as well as zwitterionic lipids and adapts its interaction and organization depending on lipid packing and lipid nature. We provide strong experimental evidence for a physiological role of the central domain of dystrophin in sarcolemma scaffolding through modulation of lipid-protein interactions.  相似文献   

2.
The lipid bis(guanidinium)-tren-cholesterol (BGTC) is a cationic cholesterol derivative bearing guanidinium polar headgroups used for gene transfection either alone or formulated as liposomes with the zwitterionic lipid 1,2-di-[cis-9-octadecenoyl]-sn-glycero-3-phosphoethanolamine (DOPE). Previous investigations have shown its ability to strongly interact with DNA and form asymmetric lipid bilayers at the air/water interface when mixed with DOPE. Here, with a view to further investigate its physicochemical behavior, we studied the interactions of mixtures of BGTC with another zwitterionic lipid, 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, (DMPC), with DNA at the air/water interface by using the Langmuir monolayer technique coupled with Brewster Angle Microscopy (BAM) and Polarization Modulation Infra Red Reflexion Absorption (PMIRRAS) spectroscopy and we investigate DNA–BGTC/DMPC interactions. We demonstrate that when DNA is injected into the subphase in excess compared to the positive charges of BGTC, it adsorbs to BGTC/DMPC monolayers at 20 mN/m whatever the lipid monolayer composition (1/5, 2/3 or 3/2 BGTC/DMPC molar ratio) and forms an incomplete monolayer of either isotropic or anisotropic double strands depending on the BGTC content in the monolayer. Compression beyond the collapse of some mixed DNA–BGTC/DMPC (2/3 and 3/2 molar ratio) systems leads to the formation of DNA monolayers underneath asymmetric lipid bilayers characterized by a bottom layer of BGTC in contact with DNA and a top layer mainly constituted of DMPC.  相似文献   

3.
SecA-lipid interactions are believed to be important for the translocation of precursor proteins across the inner membrane of Escherichia coli [Lill, R., Dowhan, W., & Wickner, W. (1990) Cell 60, 271-280]. SecA insertion into the phospholipid bilayer could a role in this process. We investigated this possibility by studying the interactions between SecA and different phospholipids using the monolayer technique. It was established that SecA is surface-active and can insert into lipid monolayers. This insertion was greatly enhanced by the negatively charged lipids DOPG and Escherichia coli cardiolipin. Insertion of SecA into these negatively charged lipids could be detected up to initial surface pressures of 34 mN/m for DOPG and 36 mN/m for Escherichia coli cardiolipin, implying a possible role for negatively charged lipids in the insertion of SecA in biological membranes. High salt concentrations did not inhibit the SecA insertion into DOPG monolayers, suggesting not only an electrostatic but also a hydrophobic interaction of SecA with the lipid monolayer. ATP decreased both the insertion (factor 2) and binding (factor 3) of SecA to DOPG monolayers. ADP and phosphate gave a decrease in the SecA insertion to the same extent as ATP, but the binding of SecA was only slightly reduced. AMP-PNP and ATP-gamma-S did not have large effects on the insertion or on the binding of SecA to DOPG monolayers. The physiological significance of these results in protein translocation is discussed.  相似文献   

4.
Pulmonary surfactant forms a monolayer of lipids and proteins at the alveolar air/liquid interface. Although cholesterol is a natural component of surfactant, its function in surface dynamics is unclear. To further elucidate the role of cholesterol in surfactant, we used a captive bubble surfactometer (CBS) to measure surface activity of spread films containing dipalmitoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylcholine/1-palmitoyl-2-oleoylphosphatidylglycerol (DPPC/POPC/POPG, 50/30/20 molar percentages), surfactant protein B (SP-B, 0.75 mol %), and/or surfactant protein C (SP-C, 3 mol %) with up to 20 mol % cholesterol. A cholesterol concentration of 10 mol % was optimal for reaching and maintaining low surface tensions in SP-B-containing films but led to an increase in maximum surface tension in films containing SP-C. No effect of cholesterol on surface activity was found in films containing both SP-B and SP-C. Atomic force microscopy (AFM) was used, for the first time, to visualize the effect of cholesterol on topography of SP-B- and/or SP-C-containing films compressed to a surface tension of 22 mN/m. The protrusions found in the presence of cholesterol were homogeneously dispersed over the film, whereas in the absence of cholesterol the protrusions tended to be more clustered into network structures. A more homogeneous dispersion of surfactant lipid components may facilitate lipid insertion into the surfactant monolayer. Our data provide additional evidence that natural surfactant, containing SP-B and SP-C, is superior to surfactants lacking one of the components, and furthermore, this raises the possibility that the cholesterol found in surfactant of warm-blooded mammals does not have a function in surface activity.  相似文献   

5.
Monolayers based on the composition of the cytoplasmic (CYT) or extracellular (EXT) sides of the myelin bilayer form coexisting immiscible liquid phases similar to the liquid-ordered/liquid-disordered phases in phospholipid/cholesterol monolayers. Increasing the temperature or surface pressure causes the two liquid phases to mix, although in significantly different fashion for the CYT and EXT monolayers. The cerebroside-rich EXT monolayer is near a critical composition and the domains undergo coalescence and a circle-to-stripe transition along with significant roughening of the domain boundaries before mixing. The phase transition in the cerebroside-free cytoplasmic side occurs abruptly without domain coalescence; hence, the cytoplasmic monolayer is not near a critical composition, although the domains exhibit shape instabilities within 1–2 mN/m of the transition. The change in mixing pressure decreases significantly with temperature for the EXT monolayer, with dΠcrit/dT ∼ 1.5 mN/m/°C, but the mixing pressure of the CYT monolayer varies little with temperature. This is due to the differences in the nonideality of cholesterol interactions with cerebrosides (EXT) relative to phospholipids (CYT). EXT monolayers based on the composition of white matter from marmosets with experimental allergic encephalomyelitis (EAE), an animal model of multiple sclerosis, remain phase-separated at higher surface pressures than control, while EAE CYT monolayers are similar to control. Myelin basic protein, when added to the CYT monolayer, increases lipid miscibility in CYT monolayers; likely done by altering the dipole density difference between the two phases.  相似文献   

6.
Apolipoprotein A-I (ApoA-I) is a protein implicated in the solubilization of lipids and cholesterol from cellular membranes. The study of ApoA-I in phospholipid (PL) monolayers brings relevant information about ApoA-I/PL interactions. We investigated the influence of PL charge and acyl chain organization on the interaction with ApoA-I using dipalmitoyl-phosphatidylcholine, dioleoyl-phosphatidylcholine and dipalmitoyl-phosphatidylglycerol monolayers coupled to ellipsometric, surface pressure, atomic force microscopy and infrared (polarization modulation infrared reflection-absorption spectroscopy) measurements. We show that monolayer compressibility is the major factor controlling protein insertion into PL monolayers and show evidence of the requirement of a minimal distance between lipid headgroups for insertion to occur, Moreover, we demonstrate that ApoA-I inserts deepest at the highest compressibility of the protein monolayer and that the presence of an anionic headgroup increases the amount of protein inserted in the PL monolayer and prevents the steric constrains imposed by the spacing of the headgroup. We also defined the geometry of protein clusters into the lipid monolayer by atomic force microscopy and show evidence of the geometry dependence upon the lipid charge and the distance between headgroups. Finally, we show that ApoA-I helices have a specific orientation when associated to form clusters and that this is influenced by the character of PL charges. Taken together, our results suggest that the interaction of ApoA-I with the cellular membrane may be driven by a mechanism that resembles that of antimicrobial peptide/lipid interaction.  相似文献   

7.
Comparative studies of the effect of a short synthetic cationic peptide, pEM-2 (KKWRWWLKALAKK), derived from the C-terminus of myotoxin II from the venom of the snake Bothrops asper on phospholipid mono- and bilayers were performed by means of Langmuir Blodgett (LB) monolayer technique, atomic force microscopy and calcein leakage assay. Phospholipid mono- and bilayers composed of single zwitterionic or anionic phospholipids as well as lipid mixtures mimicking bacterial cell membrane were used. LB measurements indicate that the peptide binds to both anionic and zwitterionic phospholipid monolayers at low surface pressure but only to anionic at high surface pressure. Preferential interaction of the peptide with anionic phospholipid monolayer is also supported by a more pronounced change of the monolayer pressure/area isotherms induced by the peptide. AFM imaging reveals the presence of nanoscale aggregates in lipid/peptide mixture monolayers. At the same time, calcein leakage experiment demonstrated that pEM-2 induces stronger disruption of zwitterionic than anionic bilayers. Results of the study indicate that electrostatic interactions play a significant role in the initial recognition and binding of pEM-2 to the cell membrane. However, membrane rupturing activity of the peptide depends on interactions other than simple ionic attraction.  相似文献   

8.
The interaction of a nonspecific wheat lipid transfer protein (LTP) with phospholipids has been studied using the monolayer technique as a simplified model of biological membranes. The molecular organization of the LTP-phospholipid monolayer has been determined by using polarized attenuated total internal reflectance infrared spectroscopy, and detailed information on the microstructure of the mixed films has been investigated by using epifluorescence microscopy. The results show that the incorporation of wheat LTP within the lipid monolayers is surface-pressure dependent. When LTP is injected into the subphase under a dipalmytoylphosphatidylglycerol monolayer at low surface pressure (< 20 mN/m), insertion of the protein within the lipid monolayer leads to an expansion of dipalmytoylphosphatidylglycerol surface area. This incorporation leads to a decrease in the conformational order of the lipid acyl chains and results in an increase in the size of the solid lipid domains, suggesting that LTP penetrates both expanded and solid domains. By contrast, when the protein is injected under the lipid at high surface pressure (> or = 20 mN/m) the presence of LTP leads neither to an increase of molecular area nor to a change of the lipid order, even though some protein molecules are bound to the surface of the monolayer, which leads to an increase of the exposure of the lipid ester groups to the aqueous environment. On the other hand, the conformation of LTP, as well as the orientation of alpha-helices, is surface-pressure dependent. At low surface pressure, the alpha-helices inserted into the monolayers are rather parallel to the monolayer plane. In contrast, at high surface pressure, the alpha-helices bound to the surface of the monolayers are neither parallel nor perpendicular to the interface but in an oblique orientation.  相似文献   

9.
Here, the interactions of aurein 1.2, a defence peptide, with T98G glioblastoma cell membranes are studied. The peptide induced maximal surface pressure changes of circa 9 mN m(-1) in monolayers of endogenous T98G membrane lipid. Reducing monolayer anionic lipid showed a positive correlation (R(2)>0.91) with decreases in maximal surface pressure changes induced by aurein 1.2 (circa 3 mN m(-1) in the absence of this lipid). Cancer cell membrane invasion by the peptide therefore appears not to be mediated by lipid receptors or specific lipid requirements but rather a general requirement for anionic lipid and/or other negatively charged membrane components.  相似文献   

10.
Monolayer techniques were used to study the interactions of various lipids (cholesterol, lysophosphatidyl choline, phosphatidal ethanolamine, phosphatidyl choline, sphingomyelin, stearic acid, and lipids extracted from plasma high density lipoproteins and very low density lipoprotein) with the lipid-free protein subunit of rat plasma high density lipoprotein and with rat plasma albumin. The proteins were injected under the lipid monolayer at fixed area, and the increase in surface pressure (decrease in surface tension) was measured as a function of time. With all lipids, both the rate and magnitude of this increase were greater with the apolipoprotein than with albumin. The degree of film penetration of pure lipid films (at an initial film pressure of 15 dynes/cm) by the two proteins followed the same order: cholesterol > phosphatidal ethanolamine > phosphatidyl choline > stearic acid > sphingomyelin > lysophosphatidyl choline. Other variables studied were protein concentration, initial film pressure, and pH. Two distinctive properties of the apolipoprotein were the penetration of lipid films at pressures above the collapse pressure of the protein, and the formation of a film even at low salt concentration. High surface activity and strong interaction of HDL-protein with lipid monolayers may be associated with the flexibility of the protein molecule due to absence of disulfide bridges. The unusual surface activity of HDL-protein may be intimately related to the mechanism of formation of the lipoprotein.  相似文献   

11.
《Biophysical journal》2020,118(11):2694-2702
Calcium ions bind to lipid membranes containing anionic lipids; however, characterizing the specific ion-lipid interactions in multicomponent membranes has remained challenging because it requires nonperturbative lipid-specific probes. Here, using a combination of isotope-edited infrared spectroscopy and molecular dynamics simulations, we characterize the effects of a physiologically relevant (2 mM) Ca2+ concentration on zwitterionic phosphatidylcholine and anionic phosphatidylserine lipids in mixed lipid membranes. We show that Ca2+ alters hydrogen bonding between water and lipid headgroups by forming a coordination complex involving the lipid headgroups and water. These interactions distort interfacial water orientations and prevent hydrogen bonding with lipid ester carbonyls. We demonstrate, experimentally, that these effects are more pronounced for the anionic phosphatidylserine lipids than for zwitterionic phosphatidylcholine lipids in the same membrane.  相似文献   

12.
Clifton LA  Lad MD  Green RJ  Frazier RA 《Biochemistry》2007,46(8):2260-2266
External reflectance Fourier transform infrared (ER-FTIR) spectroscopy and surface pressure measurements have been used to characterize the interaction of wild-type puroindoline-b (Pin-b) and two mutant forms featuring single residue substitutions-namely, Gly-46 to Ser-46 (Pin-bH) and Trp-44 to Arg-44 (Pin-bS)-with condensed-phase monolayers of zwitterionic (L-alpha-dipalmitoylphosphatidylcholine, DPPC) and anionic (L-alpha-dipalmitoylphosphatidyl-dl-glycerol, DPPG) phospholipids. The interaction with anionic DPPG monolayers, monitored by surface pressure isotherms, was influenced significantly by mutations in Pin-b (p < 0.05); wild-type Pin-b showed the highest surface pressure change of 10.6 +/- 1.0 mN m-1, followed by Pin-bH (7.9 +/- 1.6 mN m-1) and Pin-bS (6.3 +/- 1.0 mN m-1), and the surface pressure isotherm kinetics were also different in each case. Integrated Amide I peak areas from corresponding ER-FTIR spectra confirmed the differences in adsorption kinetics, but also showed that differences in adsorbed amount were less significant, suggesting that mutations influence the degree of penetration into DPPG films. All Pin-b types showed evidence of interaction with DPPC films, detected as changes in surface pressure (5.6 +/- 1.1 mN m-1); however, no protein peaks were detected in the ER-FTIR spectra, which indicated that the interaction was via penetration with limited adsorption at the lipid/water interface. The expression of Pin-b mutants is linked to wheat endosperm hardness; therefore, the data presented here suggest that the lipid binding properties may be pivotal within the mechanism for this quality trait. In addition, the data suggest antimicrobial activities of Pin-b mutants would be lower than those of the wild-type Pin-b, because of decreased selectivity toward anionic phospholipids.  相似文献   

13.
Theoretical analysis indicates that peptide VP1 forms a membrane interactive amphiphilic alpha-helix with antibacterial properties. Fourier transform infra-red based analyses showed VP1 to be alpha-helical (45%) in the presence of vesicle mimics of membranes from Staphylococcus aureus and to induce increases in the fluidity of these vesicles, as indicated by a rise in wavenumber of circa 0.5 to 1.0 cm(-1). The peptide induced surface pressure increases of 5 mN m(-1) in monolayer mimics of S. aureus membranes confirm the formation of a membrane interactive alpha-helix. These interactions appeared to involve significant hydrophobic and electrostatic contributions as VP1 induced comparable surface pressure changes in anionic (5.5 mN m(-1)) and zwitterionic (4 mN m(-1)) lipid monolayers. It is suggested that whilst efficacy requires further sequence specific information, the peptides generic structure provides the basis for its broad antimicrobial activity.  相似文献   

14.
We investigate miscibility transitions of two different ternary lipid mixtures, DOPC/DPPC/Chol and POPC/PSM/Chol. In vesicles, both of these mixtures of an unsaturated lipid, a saturated lipid, and cholesterol form micron-scale domains of immiscible liquid phases for only a limited range of compositions. In contrast, in monolayers, both of these mixtures produce two distinct regions of immiscible liquid phases that span all compositions studied, the alpha-region at low cholesterol and the beta-region at high cholesterol. In other words, we find only limited overlap in miscibility phase behavior of monolayers and bilayers for the lipids studied. For vesicles at 25 degrees C, the miscibility phase boundary spans portions of both the monolayer alpha-region and beta-region. Within the monolayer beta-region, domains persist to high pressures, yet within the alpha-region, miscibility phase transition pressures always fall below 15 mN/m, far below the bilayer equivalent pressure of 32 mN/m. Approximately equivalent phase behavior is observed for monolayers of DOPC/DPPC/Chol and for monolayers of POPC/PSM/Chol. As expected, pressure-area isotherms of our ternary lipid mixtures yield smaller molecular area and compressibility for monolayers containing more saturated acyl chains and cholesterol. All monolayer experiments were conducted under argon. We show that exposure of unsaturated lipids to air causes monolayer surface pressures to decrease rapidly and miscibility transition pressures to increase rapidly.  相似文献   

15.
Marsh D 《Biophysical journal》2007,93(11):3884-3899
Lipid-protein interactions are an important determinant of the stability and function of integral and transmembrane proteins. In addition to local interactions at the lipid-protein interface, global interactions such as the distribution of internal lateral pressure may also influence protein conformation. It is shown here that the effects of the membrane lateral pressure profile on the conformation or insertion of proteins in membranes are equivalent to the elastic response to the frustrated spontaneous curvature, co, of the component lipid monolayer leaflets. The chemical potential of the protein in the membrane is predicted to depend linearly on the spontaneous curvature of the lipid leaflets, just as does the contribution of the protein to the elastic bending energy of the lipid, and to be independent of the hydrophobic tension, γphob, at the lipid-water interface. Analysis of the dependence of protein partitioning or conformational transitions on spontaneous curvature of the constituent lipids gives an experimental estimate for the cross-sectional intramembrane shape of the protein or its difference between conformations. Values in the region of 50-110 Å2 are estimated for the effective cross-sectional shape changes on the insertion and conductance transitions of alamethicin, and on the activation of CTP:phosphocholine cytidylyltransferase or rhodopsin in lipid membranes. Much larger values are estimated for the mechanosensitive channel, MscL. Values for the change in intramembrane shape may also be used, together with determinations of lipid relative association constants, to estimate contributions of direct lipid-protein interactions to the lateral pressure experienced by the protein. Changes in chemical potential ∼12 kJ mol−1 can be estimated for radial changes of 1 Å in a protein of diameter 40 Å.  相似文献   

16.
Lhert F  Yan W  Biswas SC  Hall SB 《Biophysical journal》2007,93(12):4237-4243
To determine if hydrophobic surfactant proteins affect the stability of pulmonary surfactant monolayers at an air/water interface, the studies reported here compared the kinetics of collapse for the complete set of lipids in calf surfactant with and without the proteins. Monomolecular films spread at the surface of captive bubbles were compressed at 37°C to surface pressures above 46 mN/m, at which collapse first occurred. The rate of area-compression required to maintain a constant surface pressure was measured to directly determine the rate of collapse. For films with and without the proteins, higher surface pressures initially produced faster collapse, but the rates then reached a maximum and decreased to values <0.04 min−1 above 53 mN/m. The maximum rate for the lipids with the proteins (1.22 ± 0.28 min−1) was almost twice the value for the lipids alone (0.71 ± 0.15 min−1). Because small increments in surface pressure produced large shifts in the rate close to the fastest collapse, compressions at a series of constant speeds also established the threshold rate required to achieve high surface pressure as an indirect indication of the fastest collapse. Both samples produced a sharply defined threshold that occurred at slightly faster compression with the proteins present, supporting the conclusion of the direct measurements that the proteins produce a faster maximum rate of collapse. Our results indicate that at 47-53 mN/m, the hydrophobic surfactant proteins destabilize the compressed monolayers and tend to limit access to the higher surface pressures at which the lipid films become metastable.  相似文献   

17.
The feasibility of applying multiphoton excitation fluorescence microscopy-related techniques in planar membrane systems, such as lipid monolayers at the air-water interface (named Langmuir films), is presented and discussed in this paper. The non-linear fluorescence microscopy approach, allows obtaining spatially and temporally resolved information by exploiting the fluorescent properties of particular fluorescence probes. For instance, the use of environmental sensitive probes, such as LAURDAN, allows performing measurements using the LAURDAN generalized polarization function that in turn is sensitive to the local lipid packing in the membrane. The fact that LAURDAN exhibit homogeneous distribution in monolayers, particularly in systems displaying domain coexistence, overcomes a general problem observed when “classical” fluorescence probes are used to label Langmuir films, i.e. the inability to obtain simultaneous information from the two coexisting membrane regions. Also, the well described photoselection effect caused by excitation light on LAURDAN allows: (i) to qualitative infer tilting information of the monolayer when liquid condensed phases are present and (ii) to provide high contrast to visualize 3D membranous structures at the film's collapse pressure. In the last case, computation of the LAURDAN GP function provides information about lipid packing in these 3D structures. Additionally, LAURDAN GP values upon compression in monolayers were compared with those obtained in compositionally similar planar bilayer systems. At similar GP values we found, for both DOPC and DPPC, a correspondence between the molecular areas reported in monolayers and bilayers. This correspondence occurs when the lateral pressure of the monolayer is 26 ± 2 mN/m and 28 ± 3 mN/m for DOPC and DPPC, respectively.  相似文献   

18.
The monolayer technique has been used to study the interaction of lipids with plasma apolipoproteins. Apolipoprotein C-II and C-III from human very low density lipoproteins, apolipoprotein A-I from human high density lipoproteins and arginine-rich protein from swine very low density lipoproteins were studied. The injection of each apoprotein underneath a monolayer of egg phosphatidyl[14C]choline at 20 mN/m caused an increase in surface pressure to approximately 30 mN/m. With apolipoprotein C-II and apolipoprotein C-III there was a decrease in surface radioactivity indicating that the apoproteins were removing phospholipid from the interface; the removal of phospholipid was specific for apolipoprotein C-II and apolipoprotein C-III. Although there was a removal of phospholipid from the monolayer, the surface pressure remained constant and was due to the accumulation of apoprotein at the interface. The rate of surface radioactivity decrease was a function of protein concentration, required lipid in a fluid state and, of the lipids tested, was specific for phosphatidylcholine. Cholesterol and phosphatidylinositol were not removed from the interface. The addition of 33 mol% cholesterol to the phosphatidylcholine monolayer did not affect the removal of phospholipid by apolipoprotein C-III.The addition of phospholipid liposomes to the subphase greatly facilitated the apolipoprotein C-II-mediated removal of phospholipid from the interface.  相似文献   

19.
The surface properties of pure RuBisCo transit peptide (RTP) and its interaction with zwitterionic, anionic phospholipids and chloroplast lipids were studied by using the Langmuir monolayer technique. Pure RTP is able to form insoluble films and the observed surface parameters are compatible with an alpha-helix perpendicular to the interface. The alpha-helix structure tendency was also observed by using transmission FT-IR spectroscopy in bulk system of a membrane mimicking environment (SDS). On the other hand, RTP adopts an unordered structure in either aqueous free interface or in the presence of vesicles composed of a zwitterionic phospholipid (POPC). Monolayer studies show that in peptide/lipid mixed monolayers, RTP shows no interaction with zwitterionic phospholipids, regardless of their physical state. Also, with the anionic POPG at high peptide ratios RTP retains its individual surface properties and behaves as an immiscible component of the peptide/lipid mixed interface. This behaviour was also observed when the mixed films were composed by RTP and the typical chloroplast lipids MGDG or DGDG (mono- and di-galactosyldiacylglycerol). Conversely, RTP establishes a particular interaction with phosphatidylglycerol and cardiolipin at low peptide to lipid area covered relation. This interaction takes place with an increase in surface stability and a reduction in peptide molecular area (intermolecular interaction). Data suggest a dynamic membrane modulation by which the peptide fine-tunes its membrane orientation and its lateral stability, depending on the quality (lipid composition) of the interface.  相似文献   

20.
The amyloid protein precursor (APP) was incorporated into liposomes or phospholipid monolayers. APP insertion into liposomes required neutral lipids, such as L-alpha-phosphatidylcholine, in the target membrane. It was prevented in vesicles containing L-alpha-phosphatidylserine. The insertion was enhanced in acidic solutions, suggesting that it is modulated by specific charge/charge interactions. Surface-active properties and behaviour of APP were characterized during insertion of the protein in monomolecular films of L-alpha-phosphatidylcholine, L-alpha-phosphatidylethanolamine or L-alpha-phosphatidylserine. The presence of the lipid film enhanced the rate of adsorption of the protein at the interface, and the increase in surface pressure was consistent with APP penetrating the lipid film. The adsorption of APP on the lipid monolayers displayed a significant head group dependency, suggesting that the changes in surface pressure produced by the protein were probably affected by electrostatic interactions with the lipid layers. Our results indicate that the penetration of the protein into the lipid monolayer is also influenced by the hydrophobic interactions between APP and the lipid. CD spectra showed that a large proportion of the alpha-helical secondary structure of APP remained preserved over the pH or ionic strength ranges used. Our findings suggest that APP/membrane interactions are mediated by the lipid composition and depend on both electrostatic and hydrophobic effects, and that the variations observed are not due to major secondary structural changes in APP. These observations may be related to the partitioning of APP into membrane microdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号