首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The proto-oncogene c-myc has a central role in multiple processes important for embryonic development, including cell proliferation, growth, apoptosis, and differentiation. We have investigated the role of c-myc in neural crest by using Wnt1-Cre-mediated deletion of a conditional mutation of the c-myc gene. c-myc deficiency in neural crest resulted in viable adult mice that have defects in coat color, skull frontal bone, and middle ear ossicle development. Physiological hearing studies demonstrated a significant hearing deficit in the mutant mice. In this report, we focus on the craniofacial and hearing defects. To further examine neural crest cells affected by c-myc deficiency, we fate mapped Wnt1-Cre expressing neural crest cells using the ROSA26 Cre reporter transgene. The phenotype obtained demonstrates the critical role that c-myc has in neural crest during craniofacial development as well as in providing a model for examining human congenital skull defects and deafness.  相似文献   

2.
3.
4.
5.
6.
Ablations of the Axin family genes demonstrated that they modulate Wnt signaling in key processes of mammalian development. The ubiquitously expressed Axin1 plays an important role in formation of the embryonic neural axis, while Axin2 is essential for craniofacial skeletogenesis. Although Axin2 is also highly expressed during early neural development, including the neural tube and neural crest, it is not essential for these processes, apparently due to functional redundancy with Axin1. To further investigate the role of Wnt signaling during early neural development, and its potential regulation by Axins, we developed a mouse model for conditional gene activation in the Axin2-expressing domains. We show that gene expression can be successfully targeted to the Axin2-expressing cells in a spatially and temporally specific fashion. High levels of Axin in this domain induce a region-specific effect on the patterning of neural tube. In the mutant embryos, only the development of midbrain is severely impaired even though the transgene is expressed throughout the neural tube. Axin apparently regulates beta-catenin in coordinating cell cycle progression, cell adhesion and survival of neuroepithelial precursors during development of ventricles. Our data support the conclusion that the development of embryonic neural axis is highly sensitive to the level of Wnt signaling.  相似文献   

7.
beta-Catenin is a central mediator of Wnt signaling pathway, components of which have been implicated in B cell development and function. B cell progenitors and bone marrow stromal cells express Wnt ligands, Frizzled receptors and Wnt antagonists, suggesting fine tuned regulation of this pathway in B cell development. In particular, deletion of Frizzled 9 gene results in developmental defects at the pre-B stage of development and an accumulation of plasma cells. Furthermore, Wnt signals regulate B cell proliferation through lymphocyte enhancer-binding factor-1. However, it is not known whether Wnt signaling in B cell development is mediated by beta-catenin and whether beta-catenin plays a role in mature B cell function. In this report, we show that mice bearing B cell-specific deletion of beta-catenin have normal B cell development in bone marrow and periphery. A modest defect in plasma cell generation in vitro was documented, which correlated with a defective expression of IRF-4 and Blimp-1. However, B cell response to T-dependent and T-independent Ags in vivo was found to be normal. Thus, beta-catenin expression was found to be dispensable for normal B cell development and function.  相似文献   

8.
The role of Axin2 in calvarial morphogenesis and craniosynostosis   总被引:8,自引:0,他引:8  
Axin1 and its homolog Axin2/conductin/Axil are negative regulators of the canonical Wnt pathway that suppress signal transduction by promoting degradation of beta-catenin. Mice with deletion of Axin1 exhibit defects in axis determination and brain patterning during early embryonic development. We show that Axin2 is expressed in the osteogenic fronts and periosteum of developing sutures during skull morphogenesis. Targeted disruption of Axin2 in mice induces malformations of skull structures, a phenotype resembling craniosynostosis in humans. In the mutants, premature fusion of cranial sutures occurs at early postnatal stages. To elucidate the mechanism of craniosynostosis, we studied intramembranous ossification in Axin2-null mice. The calvarial osteoblast development is significantly affected by the Axin2 mutation. The Axin2 mutant displays enhanced expansion of osteoprogenitors, accelerated ossification, stimulated expression of osteogenic markers and increases in mineralization. Inactivation of Axin2 promotes osteoblast proliferation and differentiation in vivo and in vitro. Furthermore, as the mammalian skull is formed from cranial skeletogenic mesenchyme, which is derived from mesoderm and neural crest, our data argue for a region-specific effect of Axin2 on neural crest dependent skeletogenesis. The craniofacial anomalies caused by the Axin2 mutation are mediated through activation of beta-catenin signaling, suggesting a novel role for the Wnt pathway in skull morphogenesis.  相似文献   

9.
Reiterated Wnt signaling during zebrafish neural crest development   总被引:5,自引:0,他引:5  
While Wnt/beta-catenin signaling is known to be involved in the development of neural crest cells in zebrafish, it is unclear which Wnts are involved, and when they are required. To address these issues we employed a zebrafish line that was transgenic for an inducible inhibitor of Wnt/beta-catenin signaling, and inhibited endogenous Wnt/beta-catenin signaling at discrete times in development. Using this approach, we defined a critical period for Wnt signaling in the initial induction of neural crest, which is distinct from the later period of development when pigment cells are specified from neural crest. Blocking Wnt signaling during this early period interfered with neural crest formation without blocking development of dorsal spinal neurons. Transplantation experiments suggest that neural crest precursors must directly transduce a Wnt signal. With regard to identifying which endogenous Wnt is responsible for this initial critical period, we established that wnt8 is expressed in the appropriate time and place to participate in this process. Supporting a role for Wnt8, blocking its function with antisense morpholino oligonucleotides eliminates initial expression of neural crest markers. Taken together, these results demonstrate that Wnt signals are critical for the initial induction of zebrafish neural crest and suggest that this signaling pathway plays reiterated roles in its development.  相似文献   

10.
11.
beta-Catenin plays a key role in cadherin-mediated cell adhesion as well as in canonical Wnt signaling. To study the role of beta-catenin during eye development, we used conditional Cre/loxP system in mouse to inactivate beta-catenin in developing lens and retina. Inactivation of beta-catenin does not suppress lens fate, but instead results in abnormal morphogenesis of the lens. Using BAT-gal reporter mice, we show that beta-catenin-mediated Wnt signaling is notably absent from lens and neuroretina throughout eye development. The observed defect is therefore likely due to the cytoskeletal role of beta-catenin, and is accompanied by impaired epithelial cell adhesion. In contrast, inactivation of beta-catenin in the nasal ectoderm, an area with active Wnt signaling, results in formation of crystallin-positive ectopic lentoid bodies. These data suggest that, outside of the normal lens, beta-catenin functions as a coactivator of canonical Wnt signaling to suppress lens fate.  相似文献   

12.
Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.  相似文献   

13.
beta-Catenin, as an important effector of the canonical Wnt signaling pathway and as a regulator of cell adhesion, has been demonstrated to be involved in multiple developmental processes and tumorigenesis. beta-Catenin expression was found mainly on the Sertoli cell membrane starting from embryonic day 15.5 in the developing testes. However, its potential role in Sertoli cells during testis formation has not been examined. To determine the function of beta-catenin in Sertoli cells during testis formation, we either deleted beta-catenin or expressed a constitutively active form of beta-catenin in Sertoli cells. We found that deletion caused no detectable abnormalities. However, stabilization caused severe phenotypes, including testicular cord disruption, germ cell depletion and inhibition of Müllerian duct regression. beta-Catenin stabilization caused changes in Sertoli cell identity and misregulation of inter-Sertoli cell contacts. As Wt1 conditional knockout in Sertoli cells causes similar phenotypes to our stabilized beta-catenin mutants, we then investigated the relationship of Wt1 and beta-catenin in Sertoli cells and found Wt1 inhibits beta-catenin signaling in these cells during testis development. Wt1 deletion resulted in upregulation of beta-catenin expression in Sertoli cells both in vitro and in vivo. Our study indicates that Sertoli cell expression of beta-catenin is dispensable for testis development. However, the suppression of beta-catenin signaling in these cells is essential for proper testis formation and Wt1 is a negative regulator of beta-catenin signaling during this developmental process.  相似文献   

14.
Trunk neural crest cells delaminate from the dorsal neural tube as an uninterrupted sheet; however, they convert into segmentally organized streams before migrating through the somitic territory. These neural crest cell streams join the segmental trajectories of pathfinding spinal motor axons, suggesting that interactions between these two cell types might be important for neural crest cell migration. Here, we show that in the zebrafish embryo migration of both neural crest cells and motor axons is temporally synchronized and spatially restricted to the center of the somite, but that motor axons are dispensable for segmental neural crest cell migration. Instead, we find that muscle-specific receptor kinase (MuSK) and its putative ligand Wnt11r are crucial for restricting neural crest cell migration to the center of each somite. Moreover, we find that blocking planar cell polarity (PCP) signaling in somitic muscle cells also results in non-segmental neural crest cell migration. Using an F-actin biosensor we show that in the absence of MuSK neural crest cells fail to retract non-productive leading edges, resulting in non-segmental migration. Finally, we show that MuSK knockout mice display similar neural crest cell migration defects, suggesting a novel, evolutionarily conserved role for MuSK in neural crest migration. We propose that a Wnt11r-MuSK dependent, PCP-like pathway restricts neural crest cells to their segmental path.  相似文献   

15.
While most cranial ganglia contain neurons of either neural crest or placodal origin, neurons of the trigeminal ganglion derive from both populations. The Wnt signaling pathway is known to be required for the development of neural crest cells and for trigeminal ganglion formation, however, migrating neural crest cells do not express any known Wnt ligands. Here we demonstrate that Wise, a Wnt modulator expressed in the surface ectoderm overlying the trigeminal ganglion, play a role in promoting the assembly of placodal and neural crest cells. When overexpressed in chick, Wise causes delamination of ectodermal cells and attracts migrating neural crest cells. Overexpression of Wise is thus sufficient to ectopically induce ganglion-like structures consisting of both origins. The function of Wise is likely synergized with Wnt6, expressed in an overlapping manner with Wise in the surface ectoderm. Electroporation of morpholino antisense oligonucleotides against Wise and Wnt6 causes decrease in the contact of neural crest cells with the delaminated placode-derived cells. In addition, targeted deletion of Wise in mouse causes phenotypes that can be explained by a decrease in the contribution of neural crest cells to the ophthalmic lobe of the trigeminal ganglion. These data suggest that Wise is able to function cell non-autonomously on neural crest cells and promote trigeminal ganglion formation.  相似文献   

16.
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a ligand were studied using real-time RT-PCR and immunostaining. Statistically significant up-regulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.  相似文献   

17.
beta-Catenin is an essential component of the canonical Wnt signaling system that controls decisive steps in development. We employed here two conditional beta-catenin mutant alleles to alter beta-catenin signaling in the central nervous system of mice: one allele to ablate beta-catenin and the second allele to express a constitutively active beta-catenin. The tissue mass of the spinal cord and brain is reduced after ablation of beta-catenin, and the neuronal precursor population is not maintained. In contrast, the spinal cord and brain of mice that express activated beta-catenin is much enlarged in mass, and the neuronal precursor population is increased in size. beta-Catenin signals are thus essential for the maintenance of proliferation of neuronal progenitors, controlling the size of the progenitor pool, and impinging on the decision of neuronal progenitors to proliferate or to differentiate.  相似文献   

18.
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a were studied using real-time RT-PCR and immunostaining. Statistically significant upregulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.Key words: neural crest, Wnt, cadherin-7, cadherin-11  相似文献   

19.
We have analysed the contributions of neural crest and mesoderm to mammalian craniofacial mesenchyme and its derivatives by cell lineage tracing experiments in mouse embryos, using the permanent genetic markers Wnt1-cre for neural crest and Mesp1-cre for mesoderm, combined with the Rosa26 reporter. At the end of neural crest cell migration (E9.5) the two patterns are reciprocal, with a mutual boundary just posterior to the eye. Mesodermal cells expressing endothelial markers (angioblasts) are found not to respect this boundary; they are associated with the migrating neural crest from the 5-somite stage, and by E9.5 they form a pre-endothelial meshwork throughout the cranial mesenchyme. Mesodermal cells of the myogenic lineage also migrate with neural crest cells, as the branchial arches form. By E17.5 the neural crest-mesoderm boundary in the subectodermal mesenchyme becomes out of register with that of the underlying skeletogenic layer, which is between the frontal and parietal bones. At E13.5 the primordia of these bones lie basolateral to the brain, extending towards the vertex of the skull during the following 4-5 days. We used DiI labelling of the bone primordia in ex-utero E13.5 embryos to distinguish between two possibilities for the origin of the frontal and parietal bones: (1) recruitment from adjacent connective tissue or (2) proliferation of the original primordia. The results clearly demonstrated that the bone primordia extend vertically by intrinsic growth, without detectable recruitment of adjacent mesenchymal cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号