首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
水稻和其他禾本科植物基因组多倍体起源的证据   总被引:5,自引:0,他引:5  
基因加倍(Gene duplication)被认为是进化的加速器。古老的基因组加倍事件已经在多个物种中被确定,包括酵母、脊椎动物以及拟南芥等。本研究发现水稻基因组同样存在全基因组加倍事件,大概发生在禾谷类作物分化之前,距今约7000万年。在水稻基因组中,共找到117个加倍区段(Duplicated block),分布在水稻的全部12条染色体,覆盖约60%的水稻基因组。在加倍区段,大约有20%的基因保留了加倍后的姊妹基因对(Duplicated pairs)。与此形成鲜明对照的是加倍区段的转录因子保留了60%的姊妹基因。禾本科植物全基因组加倍事件的确定对研究禾本科植物基因组的进化具有重要影响,暗示了多倍体化及随后的基因丢失、染色体重排等在禾谷类物种分化中扮演了重要角色。  相似文献   

2.
Evidence that rice and other cereals are ancient aneuploids   总被引:26,自引:0,他引:26       下载免费PDF全文
Detailed analyses of the genomes of several model organisms revealed that large-scale gene or even entire-genome duplications have played prominent roles in the evolutionary history of many eukaryotes. Recently, strong evidence has been presented that the genomic structure of the dicotyledonous model plant species Arabidopsis is the result of multiple rounds of entire-genome duplications. Here, we analyze the genome of the monocotyledonous model plant species rice, for which a draft of the genomic sequence was published recently. We show that a substantial fraction of all rice genes ( approximately 15%) are found in duplicated segments. Dating of these block duplications, their nonuniform distribution over the different rice chromosomes, and comparison with the duplication history of Arabidopsis suggest that rice is not an ancient polyploid, as suggested previously, but an ancient aneuploid that has experienced the duplication of one-or a large part of one-chromosome in its evolutionary past, approximately 70 million years ago. This date predates the divergence of most of the cereals, and relative dating by phylogenetic analysis shows that this duplication event is shared by most if not all of them.  相似文献   

3.
To investigate genome size evolution, it is usually informative to compare closely related species that vary dramatically in genome size. A whole genome duplication (polyploidy) that occurred in rice (Oryza sativa) about 70 million years ago has been well documented based on current genome sequencing. The presence of three distinct duplicate blocks from the polyploidy, of which one duplicated segment in a block is intact (no sequencing gap) and less than half the length of its syntenic duplicate segment, provided an excellent opportunity for elucidating the causes of their size variation during the post-polyploid time. The results indicated that incongruent patterns (shrunken, balanced and inflated) of chromosomal size evolution occurred in the three duplicate blocks, spanning over 30 Mb among chromosomes 2, 3, 6, 7, and 10, with an average of 20.3% for each. DNA sequences of chromosomes 2 and 3 appeared to had become as short as about half of their initial sequence lengths, chromosomes 6 and 7 had remained basically balanced, and chromosome 10 had become dramatically enlarged (approximately 70%). The size difference between duplicate segments of rice was mainly caused by variations in non-repetitive DNA loss. Amplification of long terminal repeat retrotransposons also played an important role. Moreover, a relationship seems to exist between the chromosomal size differences and the nonhomologous combination in corresponding regions in the rice genome. These findings help shed light on the evolutionary mechanism of genomic sequence variation after polyploidy and genome size evolution.  相似文献   

4.
With the advent of high-throughput sequencing, the availability of genomic sequence for comparative genomics is increasing exponentially. Numerous completed plant genome sequences enable characterization of patterns of the retention and evolution of genes within gene families due to multiple polyploidy events, gene loss and fractionation, and differential evolutionary pressures over time and across different gene families. In this report, we trace the changes that have occurred in 12 surviving homoeologous genomic regions from three rounds of polyploidy that contributed to the current Glycine max genome: a genome triplication before the origin of the rosids (~130 to 240 million years ago), a genome duplication early in the legumes (~58 million years ago), and a duplication in the Glycine lineage (~13 million years ago). Patterns of gene retention following the genome triplication event generally support predictions of the Gene Balance Hypothesis. Finally, we find that genes in networks with a high level of connectivity are more strongly conserved than those with low connectivity and that the enrichment of these highly connected genes in the 12 highly conserved homoeologous segments may in part explain their retention over more than 100 million years and repeated polyploidy events.  相似文献   

5.
Gene duplication has been considered the most important way of generating genetic novelties. The subsequent evolution right after gene duplication is critical for new function to occur. Here we analyzed the evolutionary pattern for a recently duplicated segment between rice chromosomes 11 and 12. This duplication event was estimated to occur about 6 million years ago, during the divergence of the B- and C-genome rice species. The duplicate segment in chromosome 12 has significantly higher frequency of sequence rearrangement rate than non-duplicated regions. The rearrangement rate is approximately 6.5 breakages/Mb per million years, about six times higher than the fastest rate ever reported in eukaryotes. The genes within both segments experienced accelerated nucleotide substitution rates revealed by synonymous (Ks) and non-synonymous divergence (Ka) between Oryza sativa indica and O. sativa japonica. Analysis using EST data also implicates rapid divergence in expression between these segmental duplicate genes. These overall rapid changes from different perspective for the first time provide evidence that relaxation of selection also occurs in large-scale duplications.  相似文献   

6.
Li W  Gill BS 《Genetics》2002,160(3):1153-1162
The Sh2/A1 orthologous region of maize, rice, and sorghum contains five genes in the order Sh2, X1, X2, and two A1 homologs in tandem duplication. The Sh2 and A1 homologs are separated by approximately 20 kb in rice and sorghum and by approximately 140 kb in maize. We analyzed the fate of the Sh2/A1 region in large-genome species of the Triticeae (wheat, barley, and rye). In the Triticeae, synteny in the Sh2/A1 region was interrupted by a break between the X1 and X2 genes. The A1 and X2 genes remained colinear in homeologous chromosomes as in other grasses. The Sh2 and X1 orthologs also remained colinear but were translocated to a nonhomeologous chromosome. Gene X1 was duplicated on two nonhomeologous chromosomes, and surprisingly, a paralog shared homology much higher than that of the orthologous copy to the X1 gene of other grasses. No tandem duplication of A1 homologs was detected but duplication of A1 on a nonhomeologous barley chromosome 6H was observed. Intergenic distances expanded greatly in wheat compared to rice. Wheat and barley diverged from each other 12 million years ago and both show similar changes in the Sh2/A1 region, suggesting that the break in colinearity as well as X1 duplications and genome expansion occurred in a common ancestor of the Triticeae species.  相似文献   

7.
Investigating ancient duplication events in the Arabidopsis genome   总被引:10,自引:0,他引:10  
The complete genomic analysis of Arabidopsis thaliana has shown that a major fraction of the genome consists of paralogous genes that probably originated through one or more ancient large-scale gene or genome duplication events. However, the number and timing of these duplications still remains unclear, and several different hypotheses have been put forward recently. Here, we reanalyzed duplicated blocks found in the Arabidopsis genome described previously and determined their date of divergence based on silent substitution estimations between the paralogous genes and, where possible, by phylogenetic reconstruction. We show that methods based on averaging protein distances of heterogeneous classes of duplicated genes lead to unreliable conclusions and that a large fraction of blocks duplicated much more recently than assumed previously. We found clear evidence for one large-scale gene or even complete genome duplication event somewhere between 70 to 90 million years ago. Traces pointing to a much older (probably more than 200 million years) large-scale gene duplication event could be detected. However, for now it is impossible to conclude whether these old duplicates are the result of one or more large-scale gene duplication events. abbreviations dA, fraction of amino acid substitutions; Kn, number of nonsynonymous substitutions per nonsynonymous site; Ks, number of synonymous substitutions per synonymous site; MYA, million years ago  相似文献   

8.
The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.  相似文献   

9.

Background  

Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号