首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repair of damaged periodontal ligament (PDL) tissue is an essential challenge in tooth preservation. Various researchers have attempted to develop efficient therapies for healing and regenerating PDL tissue based on tissue engineering methods focused on targeting signaling molecules in PDL stem cells and other mesenchymal stem cells. In this context, we investigated the expression of epidermal growth factor (EGF) in normal and surgically wounded PDL tissues and its effect on chemotaxis and expression of osteoinductive and angiogenic factors in human PDL cells (HPDLCs). EGF as well as EGF receptor (EGFR) expression was observed in HPDLCs and entire PDL tissue. In a PDL tissue-injured model of rat, EGF and IL-1β were found to be upregulated in a perilesional pattern. Interleukin-1β induced EGF expression in HPDLCs but not EGFR. It also increased transforming growth factor-α (TGF-α) and heparin-binding EGF-like growth factor (HB-EGF) expression. Transwell assays demonstrated the chemotactic activity of EGF on HPDLCs. In addition, EGF treatment significantly induced secretion of bone morphogenetic protein 2 and vascular endothelial growth factor, and gene expression of interleukin-8 (IL-8), and early growth response-1 and -2 (EGR-1/2). Human umbilical vein endothelial cells developed well-formed tube networks when cultured with the supernatant of EGF-treated HPDLCs. These results indicated that EGF upregulated under inflammatory conditions plays roles in the repair of wounded PDL tissue, suggesting its function as a prospective agent to allow the healing and regeneration of this tissue.  相似文献   

2.
3.
Periodontal ligament (PDL) cells convert the orthodontic forces into biological responses by secreting signaling molecules to induce modeling of alveolar bone and tooth movement. Beta-catenin pathway is activated in response to mechanical loading in PDL cells. The upstream signaling pathways activated by mechanical loading resulting in the activation of β-catenin pathway through Wnt-independent mechanism remains to be characterized. We hypothesized that mechanical loading induces activation of β-catenin signaling by mechanisms that dependent on focal adhesion kinase (FAK) and nitric oxide (NO). We found that mechanical or pharmacological activation of β-catenin signaling in PDL cells upregulated the expression of β-catenin target genes. Pre-treatment of PDL cells with FAK inhibitor-14 prior to mechanical loading abolished the mechanical loading-induced phosphorylation of Akt and dephosphorylation of β-catenin. PDL cells pre-treated with NO donor or NO inhibitor and subjected to mechanical loading. Western blot analysis showed that the mechanical loading or pre-treatment with NO donor increased the levels of dephosphorylated β-catenin, pAkt, and pGSK-3β. Pre-treatment with NO inhibitor blocked the mechanical loading-induced phosphorylation of Akt and dephosphorylation of β-catenin. These data indicate that mechanical loading-induced β-catenin stabilization in PDL cells involves phosphorylation of Akt by two parallel pathways requiring FAK and NO.  相似文献   

4.
Mechanical stress is thought to regulate the expression of genes in the periodontal ligament (PDL) cells. Using a microarray approach, we recently identified a regulator of G-protein signaling 2 (RGS2) as an up-regulated gene in the PDL cells under compressive force. The RGS protein family is known to turn off G-protein signaling. G-protein signaling involves the production of cAMP, which is thought to be one of the biological mediators in response to mechanical stress. Here, we investigated the role of RGS2 in the PDL cells under mechanical stress. PDL cells derived from the ligament tissues of human premolar teeth were cultured in collagen gels and subjected to static compressive force. Compressive force application time-dependently enhanced RGS2 expression and intracellular cAMP levels. To examine the interrelationship between RGS2 and cAMP, the PDL cells were treated with 2',5'-dideoxyadenosine (DDA), an inhibitor of adenyl cyclase, or antisense S-oligonucleotide (S-ODN) to RGS2 under compressive force. DDA dose-dependently inhibited RGS2 stimulated by compressive force. Blockage of RGS2 by antisense S-ODN elevated the cAMP levels compared with controls. These results indicate that cAMP stimulates RGS2 expression, which in turn leads to a decrease in the cAMP production by inactivating the G-protein signaling in the mechanically stressed PDL cells.  相似文献   

5.
Decreased autophagic flux in cardiomyocytes is an important mechanism by which the β1-adrenoreceptor (β1-AR) autoantibody (β1-AA) induces heart failure. A previous study found that β1-AA imparts its biological effects via the β1-AR/Gs/AC/cAMP/PKA canonical signaling pathway, but PKA inhibition does not completely reverse β1-AA-induced reduction in autophagy in myocardial tissues, suggesting that other signaling molecules participate in this process. This study confirmed that Epac1 upregulation is indeed involved β1-AA-induced decreased cardiomyocyte autophagy through CE3F4 pretreatment, Epac1 siRNA transfection, western blot and immunofluorescence methods. On this basis, we constructed β1-AR and β2-AR knockout mice, and used receptor knockout mice, β1-AR selective blocker (atenolol), and the β2-AR/Gi-biased agonist ICI 118551 to show that β1-AA upregulated Epac1 expression through β1-AR and β2-AR to inhibit autophagy, and biased activation of β2-AR/Gi signaling downregulated myocardial Epac1 expression to reverse β1-AA-induced myocardial autophagy inhibition. This study aimed to test the hypothesis that Epac1 acts as another effector downstream of cAMP on β1-AA-induced reduction in cardiomyocyte autophagy, and β1-AA upregulates myocardial Epac1 expression through β1-AR and β2-AR, and biased activation of the β2-AR/Gi signaling pathway can reverse β1-AA-induced myocardial autophagy inhibition. This study provides new ideas and therapeutic targets for the prevention and treatment of cardiovascular diseases related to dysregulated autophagy.  相似文献   

6.
7.
It is well known that the aryl hydrocarbon receptor (AhR) is involved in the toxicity of halogenated aromatic hydrocarbons (HAH) and polycyclic aromatic hydrocarbons (PAH). Recent experiments have shown the induction of impaired tooth and hard‐tissue formation by AhR pathway activation, however, the effect on periodontal ligament (PDL) tissue remains unclear. Here, we investigated the effects of benzo(a)pyrene (BaP), a member of PAH, on the extracellular matrix (ECM) remodeling‐related molecules, collagen type I (COL‐I), matrix metalloproteinase‐1 (MMP‐1), alpha‐smooth muscle actin (α‐SMA) expression, and apoptosis in two different human periodontal ligament cells (HPDLCs). The transduction of AhR from the cytoplasm to the nucleus and the increase of AhR‐responsive genes; that is, cytochrome P450 1A1 (CYP1A1), cytochrome P450 1B1 (CYP1B1), and aryl‐hydrocarbon receptor repressor (AhRR), expression was induced by BaP exposure in both HPDLCs. BaP treatment significantly enhanced MMP‐1 mRNA expression and MMP‐1 protein production, while markedly suppressing COL‐I and a‐SMA mRNA expression in both HPDLCs. Furthermore, these BaP‐treated HPDLCs fell into apoptotic cell death as evidenced by induction in annexin V and caspase‐3/7 staining and reduction of total cell number and Bcl‐2 mRNA expression. Thus, BaP exposure altered the expression of ECM‐related molecules and induced apoptosis in HPDLCs through activation of the AhR pathway. Overactivity of the AhR pathway may induce an inappropriate turnover of PDL tissue via disordered ECM remodeling and apoptosis in PDL cells. J. Cell. Biochem. 113: 3093–3103, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The limiting component within the receptor-G protein-effector complex in airway smooth muscle (ASM) for β(2)-adrenergic receptor (β(2)-AR)-mediated relaxation is unknown. In cardiomyocytes, adenylyl cyclase (AC) is considered the "bottleneck" for β-AR signaling, and gene therapy trials are underway to increase inotropy by increasing cardiac AC expression. We hypothesized that increasing AC in ASM would increase relaxation from β-agonists, thereby providing a strategy for asthma therapy. Transgenic (TG) mice were generated with approximately two- to threefold overexpression of type 5 AC (AC5) in ASM. cAMP and airway relaxation in response to direct activation of AC by forskolin were increased in AC5-TG. Counter to our hypothesis, isoproterenol-mediated airway relaxation was significantly attenuated (~50%) in AC5-TG, as was cAMP production, suggesting compensatory regulatory events limiting β(2)-AR signaling when AC expression is increased. In contrast, acetylcholine-mediated contraction was preserved. G(αi) expression and ERK1/2 activation were markedly increased in AC5-TG (5- and 8-fold, respectively), and β-AR expression was decreased by ~40%. Other G proteins, G protein-coupled receptor kinases, and β-arrestins were unaffected. β-agonist-mediated airway relaxation of AC5-TG was normalized to that of nontransgenic mice by pertussis toxin, implicating β(2)-AR coupling to the increased G(i) as a mechanism of depressed agonist-promoted relaxation in these mice. The decrease in β(2)-AR may account for additional relaxation impairment, given that there is no enhancement over nontransgenic after pertussis toxin, despite AC5 overexpression. ERK1/2 inhibition had no effect on the phenotype. Thus perturbing the ratio of β(2)-AR to AC in ASM by increasing AC fails to improve (and actually decreases) β-agonist efficacy due to counterregulatory events.  相似文献   

9.
The β2-adrenergic receptor (β2-AR) signaling on bone cells is the major contributor in the effect of the sympathetic nervous system on bone turnover. However, it remains unclear whether receptor activator of nuclear factor κ-Β ligand (RANKL) modulation and neuropeptides expression in osteocytes are responsible for the mechanism. This study used β2-AR stimulation to investigate cell cycle and proliferation, the gene and protein expression of RANKL, and osteoprotegerin (OPG), as well as neuropeptides regulation in osteocytic MLO-Y4 cells. Clenbuterol (CLE; a β2-AR agonist) slightly promoted the growth of MLO-Y4 cells in a concentration-dependent effect but had no effect on the proliferation index. And the concentration of 10−8 M showed a significant increase in the S-phase fraction on day 3 in comparison with the control. Additionally, CLE-promoted osteoclast formation and bone resorption in osteocytic MLO-Y4 cell-RAW264.7 cell cocultures. RANKL expression level and the ratio of RANKL to OPG in MLO-Y4 cells were enhanced in CLE treatment but were rescued by blocking β2-AR signaling. However, neuropeptide Y and α-calcitonin gene-related peptide, two neurogenic markers, were inhibited in CLE treatment of MLO-Y4 cells, which was reversed by a β2-AR blocker. The results indicate that osteocytic β2-AR plays an important role in the regulation of RANKL/OPG and neuropeptides expression, and β2-AR signaling in osteocytes can be used as a new valuable target for osteoclast-related pathologic disease.  相似文献   

10.
The sodium-independent anion exchanger pendrin is expressed in several tissues including the kidney cortical collecting duct (CCD), where it acts as a chloride/bicarbonate exchanger and has been shown to participate in the regulation of acid-base homeostasis and blood pressure. The renal sympathetic nervous system is known to play a key role in the development of salt-induced hypertension. This study aimed to determine whether pendrin may partly mediate the effects of β adrenergic receptors (β-AR) on renal salt handling. We investigated the regulation of pendrin activity by the cAMP/protein kinase A (PKA) signaling pathway, both in vitro in opossum kidney proximal (OKP) cells stably transfected with pendrin cDNA and ex vivo in isolated microperfused CCDs stimulated by isoproterenol, a β-AR agonist. We found that stimulation of the cAMP/PKA pathway in OKP cells increased the amount of pendrin at the cell surface as well as its transport activity. These effects stemmed from increased exocytosis of pendrin and were associated with its phosphorylation. Furthermore, cAMP effects on the membrane expression and activity of pendrin were abolished by mutating the serine 49 located in the intracellular N-terminal domain of pendrin. Finally, we showed that isoproterenol increases pendrin trafficking to the apical membrane as well as the reabsorption of both Cl(-) and Na(+) in microperfused CCDs. All together, our results strongly suggest that pendrin activation by the cAMP/PKA pathway underlies isoproterenol-induced stimulation of NaCl reabsorption in the kidney collecting duct, a mechanism likely involved in the sodium-retaining effect of β-adrenergic agonists.  相似文献   

11.
The β-adrenoceptors (β-ARs) control many cellular processes. Here, we show that β-ARs inhibit calcium depletion-induced cell contractility and subsequent cell detachment of L6 skeletal muscle cells. The mechanism underlying the cell detachment inhibition was studied by using a quantitative cell detachment assay. We demonstrate that cell detachment induced by depletion of extracellular calcium is due to myosin- and ROCK-dependent contractility. The β-AR inhibition of L6 skeletal muscle cell detachment was shown to be mediated by the β(2)-AR and increased cAMP but was surprisingly not dependent on the classical downstream effectors PKA or Epac, nor was it dependent on PKG, PI3K or PKC. However, inhibition of potassium channels blocks the β(2)-AR mediated effects. Furthermore, activation of potassium channels fully mimicked the results of β(2)-AR activation. In conclusion, we present a novel finding that β(2)-AR signaling inhibits contractility and thus cell detachment in L6 skeletal muscle cells by a cAMP and potassium channel dependent mechanism.  相似文献   

12.
The osteogenic capacity of mesenchymal stem cells (MSCs) and the importance of β-adrenergic signals in bone formation and resorption have been well investigated. However, little is known about the development of β-adrenergic receptor (β-AR) systems and the role of β-adrenergic signals in osteogenic differentiation of MSCs, which is critically important in bone physiology and pharmacology. In this study, we demonstrated that both the mRNA and protein levels of β2- and β3-AR are up-regulated following osteogenesis of mouse MSCs. We also established that β-AR agonists negatively while antagonists positively affect MSC osteogenesis. Both β2- and β3-AR are involved in MSC osteogenesis, with β2-AR being dominant. The effect of β-ARs on MSC osteogenesis is partly mediated via the cAMP/PKA signaling. These findings suggest that MSC is also a target for β-adrenergic regulation and β-adrenergic signaling plays a role in MSC osteogenesis.  相似文献   

13.
Caveolins act as scaffold proteins in multiprotein complexes and have been implicated in signaling by G protein-coupled receptors. Studies using knock-out mice suggest that β(3)-adrenoceptor (β(3)-AR) signaling is dependent on caveolin-1; however, it is not known whether caveolin-1 is associated with the β(3)-AR or solely with downstream signaling proteins. We have addressed this question by examining the impact of membrane rafts and caveolin-1 on the differential signaling of mouse β(3a)- and β(3b)-AR isoforms that diverge at the distal C terminus. Only the β(3b)-AR promotes pertussis toxin (PTX)-sensitive cAMP accumulation. When cells expressing the β(3a)-AR were treated with filipin III to disrupt membrane rafts or transfected with caveolin-1 siRNA, the cyclic AMP response to the β(3)-AR agonist CL316243 became PTX-sensitive, suggesting Gα(i/o) coupling. The β(3a)-AR C terminus, SP(384)PLNRF(389)DGY(392)EGARPF(398)PT, resembles a caveolin interaction motif. Mutant β(3a)-ARs (F389A/Y392A/F398A or P384S/F389A) promoted PTX-sensitive cAMP responses, and in situ proximity assays demonstrated an association between caveolin-1 and the wild type β(3a)-AR but not the mutant receptors. In membrane preparations, the β(3b)-AR activated Gα(o) and mediated PTX-sensitive cAMP responses, whereas the β(3a)-AR did not activate Gα(i/o) proteins. The endogenous β(3a)-AR displayed Gα(i/o) coupling in brown adipocytes from caveolin-1 knock-out mice or in wild type adipocytes treated with filipin III. Our studies indicate that interaction of the β(3a)-AR with caveolin inhibits coupling to Gα(i/o) proteins and suggest that signaling is modulated by a raft-enriched complex containing the β(3a)-AR, caveolin-1, Gα(s), and adenylyl cyclase.  相似文献   

14.
15.
The β(2) adrenergic receptor (β(2)-AR) is a model system for studying the ligand recognition process in G protein-coupled receptors. Fenoterol (FEN) is a β(2)-AR selective agonist that has two centers of chirality and exists as four stereoisomers. Radioligand binding studies determined that stereochemistry greatly influences the binding affinity. Subsequent Van't Hoff analysis shows very different thermodynamics of binding depending on the stereoconfiguration of the molecule. The binding of (S,x')-isomers is almost entirely enthalpy controlled whereas binding of (R,x')-isomers is purely entropy driven. Stereochemistry of FEN molecule also affects the coupling of the receptor to different G proteins. In a rat cardiomyocyte contractility model, (R,R')-FEN was shown to selectively activate G(s) protein signaling while the (S,R')-isomer activated both G(i) and G(s) protein. The overall data demonstrate that the chirality at the two chiral centers of the FEN molecule influences the magnitude of binding affinity, thermodynamics of local interactions within the binding site, and the global mechanism of β(2)-AR activation. Differences in thermodynamic parameters and nonuniform G-protein coupling suggest a mechanism of chiral recognition in which observed enantioselectivities arise from the interaction of the (R,x')-FEN stereoisomers with a different receptor conformation than the one with which the (S,x')-isomer interacts.  相似文献   

16.
17.
Periodontal ligament (PDL) is one of the most important tissues in maintaining the homeostasis of tooth and tooth-supporting tissue, periodontium. In this study, we investigated the expression profile of active genes in the human PDL obtained by collecting sequences with a 3'-directed cDNA library, which faithfully represents the composition of the mRNA population. We succeeded in obtaining a total of 1752 cDNA sequences by sequencing randomly selected clones and identified a total of 1318 different species as gene signatures (GS) by their sequence identity, 344 of which were known genes in the GenBank, and 974 of which were new genes. The resulting expression profile showed that collagen type I and type III were the most abundant genes and that osteogenesis-related proteins, such as SPARC/osteonectin and osteoblast specific factor 2, were highly expressed. By comparing the expression profile of PDL with 44 profiles similarly obtained with unrelated human cell/tissue, nine novel genes, which are probably expressed specifically in PDL, were discovered. Among them, we cloned a full-length cDNA of GS5096, which is frequently expressed in freshly-isolated periodontal tissue. We found that it encodes a novel protein, which is a new member of the class I small leucine-rich repeat proteoglycan family, and designated it PLAP-1 (periodontal ligament associated protein-1). PLAP-1 mRNA expression was confirmed in in vitro-maintained PDL cells and was enhanced during the course of the cytodifferentiation of the PDL cells into mineralized tissue-forming cells such as osteoblasts and cementoblasts. These findings suggest the involvement of PLAP-1 in the mineralized matrix formation in PDL tissues.  相似文献   

18.

Background

Interstitial cystitis (IC) is a debilitating disease characterized by chronic inflammation of the urinary bladder, yet specific cellular mechanisms of inflammation in IC are largely unknown. Multiple lines of evidence suggest that β-adrenergic receptor (AR) signaling is increased in the inflamed urothelium, however the precise effects of these urothelial cell signals have not been studied. In order to better elucidate the AR signaling mechanisms of inflammation associated with IC, we have examined the effects of β-AR stimulation in an immortalized human urothelial cell line (UROtsa). For these studies, UROtsa cells were treated with effective concentrations of the selective β-AR agonist isoproterenol, in the absence or presence of selective inhibitors of protein kinase A (PKA). Cell lysates were analyzed by radioimmunoassay for generation of cAMP or by Western blotting for induction of protein products associated with inflammatory responses.

Results

Radioligand binding demonstrated the presence of β-ARs on human urothelial UROtsa cell membranes. Stimulating UROtsa cells with isoproterenol led to concentration-dependent increases of cAMP production that could be inhibited by pretreatment with a blocking concentration of the selective β-AR antagonist propranolol. In addition, isoproterenol activation of these same cells led to significant increases in the amount of phosphorylated extracellular signal-regulated kinase (pERK), inducible nitric oxide synthase (iNOS) and the induced form of cyclooxygenase (COX-2) when compared to control. Moreover, preincubation of UROtsa cells with the selective PKA inhibitors H-89 or Rp-cAMPs did not diminish this isoproterenol mediated phosphorylation of ERK or production of iNOS and COX-2.

Conclusion

Functional β-ARs expressed on human urothelial UROtsa cell membranes increase the generation of cAMP and production of protein products associated with inflammation when activated by the selective β-AR agonist isoproterenol. However, the increased production of iNOS and COX-2 by isoproterenol is not blocked when UROtsa cells are preincubated with inhibitors of PKA. Therefore, UROtsa cell β-AR activation significantly increases the amount of iNOS and COX-2 produced by a PKA-independent mechanism. Consequently, this immortalized human urothelial cell line can be useful in characterizing potential AR signaling mechanisms associated with chronic inflammatory diseases of the bladder.  相似文献   

19.
The chromogranin A (CHGA)-derived peptide catestatin (CST: hCHGA(352-372)) is a noncompetitive catecholamine-release inhibitor that exerts vasodilator, antihypertensive, and cardiosuppressive actions. We have shown that CST directly influences the basal performance of the vertebrate heart where CST dose dependently induced a nitric oxide-cGMP-dependent cardiosuppression and counteracted the effects of adrenergic stimulation through a noncompetitive antagonism. Here, we sought to determine the specific intracardiac signaling activated by CST in the rat heart. Physiological analyses performed on isolated, Langendorff-perfused cardiac preparations revealed that CST-induced negative inotropism and lusitropism involve β(2)/β(3)-adrenergic receptors (β(2)/β(3)-AR), showing a higher affinity for β(2)-AR. Interaction with β(2)-AR activated phosphatidylinositol 3-kinase/endothelial nitric oxide synthase (eNOS), increased cGMP levels, and induced activation of phosphodiesterases type 2 (PDE2), which was found to be involved in the antiadrenergic action of CST as evidenced by the decreased cAMP levels. CST-dependent negative cardiomodulation was abolished by functional denudation of the endothelium with Triton. CST also increased the eNOS expression in cardiac tissue and human umbilical vein endothelial cells. cells, confirming the involvement of the vascular endothelium. In ventricular extracts, CST increased S-nitrosylation of both phospholamban and β-arrestin, suggesting an additional mechanism for intracellular calcium modulation and β-adrenergic responsiveness. We conclude that PDE2 and S-nitrosylation play crucial roles in the CST regulation of cardiac function. Our results are of importance in relation to the putative application of CST as a cardioprotective agent against stress, including excessive sympathochromaffin overactivation.  相似文献   

20.
Liu M  Dai J  Lin Y  Yang L  Dong H  Li Y  Ding Y  Duan Y 《Gene》2012,491(2):187-193
Periodontal ligament cells can potentially differentiate into osteoblast-like cells and influence the remodeling of periodontal tissues under mechanical strain conditions. In the present study, Gene chip technology was adopted to investigate the effect of the cyclic stretch on the expression of osteogenic-related genes in human periodontal ligament cells (HPDLCs). Cultured HPDLCs were subjected to 12% elongation cyclic stretch for 24 h using a Flexercell Strain Unit, and then GEArray Q series human osteogenesis gene expression profile chip with 96 spot array numbers was used to conduct parallel analyses on the change of the related gene expression in the osteogenic differentiation of HPDLCs stimulated by cyclic stretch. The results show that after the HPDLCs were stimulated by the cyclic stretch, the expression of 21 osteogenic-related genes was significantly upregulated, including 10 growth factor genes and their associated molecules, 10 extracellular matrix genes and their associated proteins, and 1 cell adhesion molecule. Two genes were significantly downregulated, including one growth factor gene and one cell adhesion molecule. Then the expressions of 10 candidate genes were validated using Real-time RT-PCR. These results indicate that cyclic stretch with 12% deformation can stimulate or inhibit some gene expression which was associated with the process of HPDLCs differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号