首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 112 毫秒
1.
Summary In a 2-year experiment, the evergreen shrubsErica tetralix andCalluna vulgaris (dominant on nutrient-poor heathland soils) and the perennial deciduous grassMolinia caerulea (dominant on nutrient-rich heathland soils) were grown in replacement series in a factorial combination of four competition types (no competition, only aboveground competition, only belowground competition, full competition) and two levels of nutrient supply (no nutrients and 10 g N+2 g P+10 g K m−2 yr−1). Both in the unfertilized and in the fertilized treatmentsMolinia allocated about twice as much biomass to its root system than didErica andCalluna. In all three species the relative amount of biomass allocated to the roots was lower at high than at low nutrient supply. The relative decrease was larger forMolinia than forErica andCalluna. In the fertilized monocultures biomass of all three species exceeded that in the unfertilized series.Molinia showed the greatest biomass increase. In the unfertilized series no effects of interspecific competition on the biomass of each species were observed in either of the competition treatments. In the fertilized mixtures where only belowground competition was possibleMolinia increased its biomass at the expense of bothErica andCalluna. When only aboveground competition was possible no effects of interspecific competition on the biomass of the competing species were observed. However, in contrast with the evergreens,Molinia responded by positioning its leaf layers relatively higher in the canopy. The effects of full competition were similar to those of only belowground competition, so in the fertilized series belowground competition determined the outcome of competition. The high competitive ability ofMolinia at high nutrient supply can be attributed to the combination of (1) a high potential productivity, (2) a high percentage biomass allocation to the roots, (3) an extensive root system exploiting a large soil volume, and (4) plasticity in the spatial arrangement of leaf layers over its tall canopy. In the species under study the allocation patterns entailed no apparent trade-off between the abilities to compete for above- and belowground resources. This study suggests that this trade-off can be overcome by: (1) plasticity in the spatial arrangement of leaf layers and roots, and (2) compensatory phenotypic and species-specific differences in specific leaf area and specific root length.  相似文献   

2.
Summary The concept of the relative nutrient requirement (L n) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the dominant plant species has on (1) the distribution of nutrients over the plant biomass and the soil compartment of the ecosystem and (2) the recirculation rate of nutrients. The first effect of the dominant plant species can be calculated on the basis of the /k ratio (which is the ratio of the relative mortality to the decomposition constant). The second effect can be analysed using the relative nutrient requirement (L n). The mass loss and the changes in the amounts of N and P in decomposing above-ground and below-ground litter produced by Erica tetralix and Molinia caerulea were measured over three years. The rates of mass loss from both above-ground and below-ground litter of Molinia were higher than those from Erica litter. After an initial leaching phase, litter showed either a net release or a net immobilization of nitrogen or phosphorus that depended on the initial concentrations of these nutrients. At the same sites, mineralization of nitrogen and phosphorus were measured for two years both in communities dominated by Molinia and in communities dominated by Erica. There were no clear differences in the nitrogen mineralization, but in one of the two years, phosphate mineralization in the Molinia-community was significantly higher. On the basis of the theory that was developed, mineralization rates and ratios between amounts of nutrients in plant biomass and in the soil were calculated on the basis of parameters that were independently measured. There was a reasonable agreement between predicted and measured values in the Erica-communities. In the Molinia-communities there were large differences between calculated and measured values, which was explained by the observation that the soil organic matter in these ecosystems still predominantly consisted of Erica-remains.  相似文献   

3.
F. Berendse  H. Oudhof  J. Bol 《Oecologia》1987,74(2):174-184
Summary The term relative nutrient requirement is introduced in order to measure and to compare the nutrient losses from different perennial plant populations and the amount of nutrient that they need to absorb to compensate these losses. The relative nutrient requirement (L) is defined as the amount of the growth-limiting nutrient that must be taken up to maintain or replace each unit of biomass during a given time interval (e.g., mgN g-1 biomass year-1). It is derived that in a plant community with two competing perennial plant populations, species1 will become dominant if the relative competition coefficient k 12 (sensu De Wit 1960) exceeds the ratio between the relative nutrient requirements of the two species (L 1/L 2), whereas species 2 will become dominant, if k 12 is below this critical ratio. The above-ground litter production was measured inwet heathland communities dominated by Erica tetralix or by Molinia caeruleain order to estimate N and P losses from theaboveground biomass and to calculate the relative N and P requirements of these species. Molinia lost during one year 63% and 34%, respectively, of the amount of N and P present in the above-ground biomass at the end of the growing season. These losses were in Erica 27% and 31%, respectively. The relative N requirements of the two species show the same difference: 7.5 and 2.6 mg N g-1 yr-1, respectively, in Molinia and in Erica. Also the relative P requirement of Molinia is higher as well as that of Erica (0.18 versus 0.08 mg P g-1 yr-1). The relative competition coefficient of Molinia with respect to Erica (k me ) is equal to unity under unfertilized conditions but increases with increasing nutrient supply. Under nutrient-poor conditions k me is below the critical ratio of the relative nutrient requirements of the two species (L m /L e =2.9 or 2.3), so that Erica will be the dominant species. After an increase in nutrient availability k me increases and exceeds this critical limit which results in Molinia replacing Erica. During the last 20 years this replacement of Erica-dominant communities by monocultures of Molinia has been observed in almost all wet heathlands in The Netherlands along with a strong increase in nitrogen availability.  相似文献   

4.
Root production and turnover were studied using sequential core sampling and observations in permanent minirhizotrons in the field in three dry heathland stands dominated by the evergreen dwarfshrub Calluna vulgaris and the grasses Deschampsia flexuosa and Molinia caerulea, respectively. Root biomass production, estimated by core sampling, amounted to 160 (Calluna), 180 (Deschampsia) and 1380 (Molinia) g m-2 yr-1, respectively. Root biomass turnover rate in Calluna (0.64 yr-1) was lower compared with the grasses (Deschampsia: 0.96 yr-1; Molinia 1.68yr-1)). Root length turnover rate was 0.75–0.77 yr-1 (Deschampsia) and 1.17–1.49 yr-1 (Molinia), respectively. No resorption of N and P from senescing roots was observed in either species. Input of organic N into the soil due to root turnover, estimated using the core sampling data, amounted to 1.8 g N m-2 yr-1(Calluna), 1.7 g N m-2 yr-1 (Deschampsia) and 19.7 g N m-2 yr-1 (Molinia), respectively. The organic P input was 0.05, 0.07 and 0.55 g P M-2 yr-1, respectively. Using the minirhizotron turnover estimates these values were20–22% (Deschampsia) and 11–30% (Molinia) lower.When the biomass turnover data were used, it appeared that in the Molinia stand root turnover contributed 67% to total litter production, 87% to total litter nitrogen loss and 84% to total litter phosphorus loss. For Calluna and Deschampsia these percentages were about three and two times lower, respectively.This study shows that (1) Root turnover is a key factor in ecosystem C, N, and P cycling; and that (2) The relative importance of root turnover differs between species.  相似文献   

5.
Root production and root turnover in two dominant species of wet heathlands   总被引:6,自引:0,他引:6  
Summary Root biomass production, root length production and root turnover of Erica tetralix and Molinia caerulea were estimated by sequential core sampling and by observations in permanent minirhizotrons in the field. Root biomass production, estimated by core sampling, was 370 (Erica) and 1080 (Molinia) g m-2 yr-1. This was for both species equal to aboveground production. Assuming steady-state conditions for the root system, root biomass turnover rates (yr-1), estimated by core sampling, were 1.72 (Erica) and 1.27 (Molinia). Root length production of both species, estimated by minirhizotron observations, varied significantly with observation depth. Root length turnover rate (yr-1) of both species did not vary significantly with observation depth and averaged 0.92 in Erica and 2.28 in Molinia. Reasons are given for the discrepancy between the results of the two types of turnover measurements. The data suggest that the replacement of Erica by Molinia in a wet heathland, which occurs when nutrient availability increases, leads to an increased flow of carbon and nutrients into the soil-system. Therefore, there may be a positive feedback between dominance of Molinia and nutrient availability.  相似文献   

6.
R. Aerts 《Oecologia》1989,78(1):115-120
Summary Leaf turnover and aboveground productivity in relation to nutrient availability were studied in the evergreen shrubs Erica tetralix and Calluna vulgaris. In monospecific stands of these species four levels of nutrient (NPK) availability were created during three growing seasons. Percentage survival and life expectancy of Erica leaves decreased with increasing nutrient availability. For Calluna there was no effect. Winter mortality of Erica leaves was smaller than growing season mortality. These was no difference for Calluna. The timing of leaf mortality of both species was not affected by nutrient treatment. At the end of the experimental period current year leaf biomass, total biomass and current year second year and third year biomass of both species showed a significant increase with increasing nutrient availability. The relative increase was greater for Calluna, except for second and third year biomass. Stem production and stem mortality of both species increased with increasing nutrient availability. The increased stem mortality resulted also for Calluna in an increased leaf turnover (per unit ground area) with increasing nutrient availability. Nutrient cycling in ecosystems dominated by these species will increase with increasing nutrient availability, because of increased leaf and stem turnover and productivity. This phenotypic effect is similar to the effect of the shift in dominance between different species which occurs along natural gradients of nutrient availability.  相似文献   

7.
A three year fertilization experiment was conducted in which nitrogen (N series: 20 g N m–2 yr–1), phosphorus (P series: 4 g P m–2 yr–1) and potassium (K series: 20 g K m–2 yr–1) were added to a mixed vegetation of Erica tetralix and Molinia caerulea. At the end of each growing season the percentage cover of each species was determined. At the end of the experiment percentage cover of each species was found to be positively correlated with the harvested biomass. In the unfertilized control series the cover of Erica and Molinia did not change significantly during the experiment. In all fertilized series however, especially in the P series, cover of Erica decreased significantly. The cover of Molinia increased significantly in the P series only.In the fertilized series the biomass of Erica and total biomass per plot did not change significantly compared with the control series. In the P series the biomass of Molinia increased significantly.It is suggested that with increasing phosphorus or nitrogen availability Molinia outcompetes Erica because the former invests more biomass in leaves which in turn permits more carbon to be allocated to the root system, which thereupon leads to a higher nutrient uptake.  相似文献   

8.
During the last decades, the perennial tussock grass Molinia caerulea has shown an increased abundance in European heathlands, most likely as a result of increased nitrogen deposition and altered management schemes. Because of its deciduous nature, Molinia produces large amounts of litter each year, which may affect the intensity and frequency of accidental fires in heathlands. These fires may influence plant population dynamics and heathland community organization through their effects on plant vital attributes and competitive interactions. In this study, fire-induced changes in competitive ability and invasiveness of Molinia through changes in biomass production, seed set and seed germination under both natural and laboratory conditions were investigated. We found that fire significantly increased aboveground biomass, seed set and germination of Molinia. Seed set was twice as high in burned compared to unburned heathland. Two years after fire, seedling densities in natural conditions were on average six times higher in burned than in unburned heathland, which resulted in increased abundance of Molinia after burning. The seed germination experiment indicated that seeds harvested from plants in burned heathland showed higher germination rates than those from unburned heathland. Hence, our results clearly demonstrate increased invasive spread of Molinia after large and intense fires. Active management guidelines are required to prevent further encroachment of Molinia and to lower the probability of large fires altering the heathland community in the future.  相似文献   

9.
Abstract. In the mountains of northern Spain, patches dominated by Calluna vulgaris are scarce and they may disappear or change as a result of continued lack of management and possibly increasing nutrient availability through atmospheric deposition. The effects in the soil properties and in the composition of Calluna vulgaris and Erica tetralix shoots on heathlands dominated by Calluna and Erica subjected to fertilization and experimental cutting were studied in three mountain passes in northern Spain. A total of 90 1‐m2 plots received different combinations of cutting and twice the estimated atmospheric deposition of nitrogen (5.6 g.m?2.yr?1) as ammonium nitrate. One of the dominant ericaceous species (Calluna and Erica) was selectively cut by hand at ground level and their nitrogen shoot content were compared in the presence or absence of the other. Treatments were carried out in April 1998. In each plot one soil sample was taken in the original situation and 12, 24 and 36 months after the treatments. Soil properties such as organic matter, total nitrogen, available phosphorus and pH were determined. In every plot five shoots of Calluna and Erica were also taken to analyse total nitrogen content in the original situation and 12, 24 and 36 mo after the treatments. Nitrogen addition does not necessarily lead to increased levels in the soil, and a clear pattern was not found in the three areas. A gradual decrease in available phosphorus content was detected in the three areas until two years after treatment, although values tend to recover in two of the areas in the third study year. An increase in organic matter content was observed in all areas. It is concluded that increased nutrients alone, at twice the rate of the estimated current atmospheric deposition for the area, which is relatively low, will not alter significantly the soil characteristics of the mountain heathland stands. A clear increase in plant N‐content is observed in the fertilized plots in comparison with the non‐fertilized ones and Calluna always has higher nitrogen content than Erica. This increase is most pronounced one year after the treatments started in one of the areas and after two years in the other two areas. In some cases the elimination of one species is seen to favour nitrogen increase in the other.  相似文献   

10.
G. W. Heil  M. Bruggink 《Oecologia》1987,73(1):105-107
Summary A combination of a removal and fertilization experiment in the field and a replacement experiment in containers in a cold frame was carried out to investigate the role of nutrient supply in the interactions between Calluna vulgaris and Molinia caerulea. It is concluded that the growth of Calluna as well as that of Molinia increased with increasing nutrient availability. However, the increase in biomass of Molinia was much larger than that of Calluna. It is also concluded that increased nutrient availability favours the competitive vigour of Molinia in interaction with Calluna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号