首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Agricultural environments have a critical role in the global conservation of biodiversity, but the persistence of forest and woodland-dependent species in these systems is often limited by insufficient habitat. Modified or semi-natural ‘countryside’ (matrix) vegetation is used by many species, but its value at the landscape scale is rarely tested. Do such habitats simply provide additional resources for populations sustained by remnant native vegetation in the landscape, or can they enhance populations over and above that sustained by natural vegetation cover? We surveyed woodland-dependent birds in all types of landscape element in 27 farmland mosaics (100 ha each) in south-eastern Australia. Four measures of wooded vegetation cover were quantified: native vegetation only; and combinations of native vegetation plus scattered trees and/or tree plantations. We used an information-theoretic approach to compare the responses of 30 species to each measure of vegetation cover. Woodland birds were well represented in agricultural mosaics (65% of the regional species-pool); however, almost half were recorded only in mosaics with >20% native vegetation cover. The incidence of 23 species was positively related to measures of wooded cover, indicating increased occurrence in mosaics with a greater cover of wooded vegetation. For 12 species, scattered trees and plantations provided supplementary habitat that enhanced their population status at the landscape scale, beyond that sustained by native vegetation cover. While native vegetation has a critical role for conservation in agricultural environments, careful management of wooded countryside elements (such as scattered trees, tree plantations) offers additional benefits to the woodland-dependent avifauna.  相似文献   

2.
Australia is unique in having two highly diverse plant genera, Eucalyptus and Acacia, that dominate the vegetation on a continent‐wide scale. The recent shift in plantation forestry away from exotic Pinus radiata to native Eucalyptus species has resulted in much more extensive exchange of biota between native forest and plantation ecosystems than exchange in the past with plantations of exotic species. Growing numbers of hectares are being planted to Eucalyptus globulus across Australia, and plantations are providing resources and corridors for native biota. The present paper focuses on both the benefits and risks of having large‐scale forestry plantations of native species that are closely related to dominant native taxa in local forests. At least 85 species of insects have been recorded as pests of Eucalyptus plantations around Australia; the vast majority of these have been insects using the same host species, or closely related taxa, in native forests. Plantations of native species may also benefit from closely related local forests through the presence of: (i) the diverse array of ectomycorrhizal fungi favourable for tree growth; (ii) natural enemies harboured in native habitats; and (iii) recruitment of other important mutualists, such as pollinators. Exchanges work in two directions: plantations are also likely to influence native forests through the large amount of insect biomass production that occurs in outbreak situations, or through the introduction or facilitation of movements for insects that are not native to all parts of Australia. Finally, older plantations in which trees flower may exchange genes with surrounding forest species, given the high degree of hybridization exhibited by many Eucalyptus species. This is an aspect of exchange for which few data have been recorded. In summary, because of Australia’s unique biogeography, plantation forestry using eucalypt species entails exchanges with natural habitats that are unparalleled in scale and diversity in any other part of the world. More exchanges are likely as plantations occupy greater area, and as the time under cultivation increases.  相似文献   

3.
Species can change their activity patterns in response to biotic and abiotic factors, such as sunlight and moonlight. The influence of these variables is a key question for ecological research and biodiversity conservation. The conversion of natural grasslands into tree plantations has reached high levels in temperate South America. These novel ecosystems elicit behavioural changes that can be detrimental or beneficial to wildlife. In this research, we describe the activity patterns of mammals (mid and large-sized) during sun and lunar phases using camera trap data (2015–2021; 22 926 camera/nights) to assess the effects of the season (warm and cold), habitat type (native forests, grasslands, Eucalyptus plantations) and landscape afforestation degree (10%–90%) in eight landscape samples (5 km radius) at Uruguayan grasslands. This represents the first study of temporal patterns in grassland afforestation worldwide, and concerning solar time and lunar patterns in Uruguay. Across 257 camera trap stations, 5297 independent detections of 13 species were recorded. While there were no significant differences among seasons nor through a landscape gradient of afforestation cover, the local habitat type affected most species temporal niches, finding significant differences between native ecosystems and Eucalyptus plantations, despite their close spatial proximity. Cathemeral and nocturnal activity patterns were seen for 12 species, and nine showed lunarphobic or lunarphilic trends according to habitat cover. In tree plantations, five of seven species narrowed their temporal activity compared to native habitats, and four changed their nocturnal activity. These alterations showed that several species adjust their daily activity patterns according to sun and moon phases under Eucalyptus plantations, probably reacting to changes in predation risk, hunting pressure, or foraging opportunities. Given that afforestation is projected to grow in southern South America, we must improve our understanding of how species adjust their activities in such novel ecosystems to identify measures needed to increase their conservation opportunities.  相似文献   

4.
Summary Revegetation within cleared farming landscapes offers the potential to restore habitat for many woodland‐dependent species that have declined since European settlement. Most species of arboreal marsupials require hollows for breeding and diurnal shelter, a resource that is usually available only in old trees; however, this constraint does not apply to the Koala. In this study, we describe the occupancy and use of young (4‐ to 7‐year old) eucalypt plantations by Koalas in a predominantly cleared landscape used for intensive cropping and grazing. We compare Koala occupancy in 27 eucalypt plantations, 5 paddocks and 11 remnant forest and woodland sites, and we report the relative usage of these three land cover types by two adult male Koalas that were radio‐tracked for 5 and 7 months using GPS transmitters. Koalas were recorded using young eucalypt plantations at 7 sites and remnant forest and woodland at 7 sites. Both radio‐collared Koalas used eucalypt plantations more than expected based on the availability of this land cover type in their home‐ranges. Occupancy of young eucalypt plantations and remnant patches by Koalas was strongly influenced by the proximity of these sites to remnant vegetation.  相似文献   

5.
Expansion of the nature conservation estate in northeastern New South Wales, Australia, has captured weed‐infested timber plantations amid a mosaic of high conservation value lands. We adopted a state‐and‐transition approach to test the hypothesis that restoration barriers restrict the natural regeneration of native species in Eucalyptus grandis plantations infested by Lantana camara in Bongil Bongil National Park, New South Wales. Plantation tree thinning and weed control were applied in factorial combination at three sites (totaling to 4.5 ha). Topsoil chemistry responses to these interventions were attributable to the “ash bed” effect, with temporary increases in topsoil pHW and nitrate, particularly where canopy reduction was greatest. Other soil changes were minor, indicating that thinning and burning did not risk soil degradation. Plant species richness and functional group representation in the regenerating understorey were improved by the interventions. Regeneration of native potential canopy trees, understorey trees, shrubs and woody climbers, and perennial forbs all increased with canopy retention. Grass cover dominated the regeneration where canopy cover was less than 50%. In the absence of weed control, the cover of introduced shrubs increased with reduction in canopy cover, as did the rate of understorey regeneration generally. These responses indicate that thinning and weed control can reinstate succession, leading to structurally and compositionally diverse forest. Given the abundance of native woody regeneration under retained canopy, the lantana understorey was more important in inhibiting native regeneration. The experimental approach will promote efficient use of resources across the remaining 200 ha of low conservation value plantations in this national park.  相似文献   

6.
We compared the vegetation structure between old (>70 year) stands of planted diversified native forests and stands of Eucalyptus tereticornis embedded in a mosaic of Eucalyptus stands. We then tested for differences in the abundance, species richness, species composition, and ecological traits (forest dependence, sensitivity to forest fragmentation, and diet) of the understory bird assemblages inhabiting both kinds of stands. We expected differences in the structure of the bird assemblages because of the different origins and management strategies (contrary to native stands, Eucalyptus stands were selectively logged in the past). Three stands of each habitat (native and Eucalyptus) were sampled with mist nets during 11 months. Eucalyptus stands had a denser understory, whereas native plantations had a more developed vertical structure and a greater density of native trees. The abundance distribution of bird species was more homogeneous in Eucalyptus than in native stands. Eucalyptus had slightly higher species richness (36 species) than native stands (32 species). The composition of species and the occurrence of the diet, forest dependence, and sensitivity to forest fragmentation categories were similar between habitats. Some bird species (e.g. Turdus leucomelas), however, were more abundant in one habitat over the other. Old stands of Eucalyptus and planted native forest can harbor a diverse bird community similar in structure but not exactly equivalent for individual bird species. Planting native diversified forests and keeping set‐aside stands of the exotic tree should be viewed as complementary rather than alternative strategies for maintaining bird diversity within plantations.  相似文献   

7.
Abstract We examined the potential of forest plantations to support communities of forest‐using insects when planted into an area with greatly reduced native forest cover. We surveyed the insect fauna of Eucalyptus globulus (Myrtaceae) plantations and native Eucalyptus marginata dominated remnant woodland in south‐western Australia, comparing edge to interior habitats, and plantations surrounded by a pastoral matrix to plantations adjacent to native remnants. We also surveyed insects in open pasture. Analyses focused on three major insect orders: Coleoptera, Lepidoptera and Hymenoptera. Plantations were found to support many forest‐using insect species, but the fauna had an overall composition that was distinct from the remnant forest. The pasture fauna had more in common with plantations than forest remnants. Insect communities of plantations were different from native forest both because fewer insect species were present, and because they had a few more abundant insect species. Some of the dominant species in plantations were known forestry pests. One pest species (Gonipterus scutellatus) was also very abundant in remnant forest, although it was only recently first recorded in Western Australia. It may be that plantation forestry provided an ecological bridge that facilitated invasion of the native forest by this nonendemic pest species. Plantation communities had more leaf‐feeding moths and beetles than remnant forests. Plantations also had fewer ants, bees, evanioid wasps and predatory canopy beetles than remnants, but predatory beetles were more common in the understory of plantations than remnants. Use of broad spectrum insecticides in plantations might limit the ability of these natural enemies to regulate herbivore populations. There were only weak indications of differences in composition of the fauna at habitat edges and no consistent differences between the fauna of plantations adjacent to remnant vegetation and those surrounded by agriculture, suggesting that there is little scope for managing biodiversity outcomes by choosing different edge to interior ratios or by locating plantations near or far from remnants.  相似文献   

8.
We studied invasion into native Nothofagus/Austrocedrus forest by many introduced tree species planted between 1910 and 1940 in plantations near the center of Isla Victoria, in northern Patagonia. We located virtually all individuals of these species in 30 ha of forest in two series of transects at increasing distances from the plantations. Although these species included many reported as highly invasive elsewhere, we found little evidence for invasion on Isla Victoria, with many invasive species utterly failing to invade native forest. There was a notable decline with distance in number of introduced individuals, but wind direction appeared to be unimportant. Pseudotsuga menziesii and Juniperus communis were the only 2 species represented by many individuals, while 4 pine species plus Araucaria araucana were far less numerous and 6 other species were found fewer than 10 times each. Even those species found repeatedly were represented overwhelmingly by small individuals, and the great majority of introduced individuals were found not in native forest proper, but in somewhat open areas such as road verges, small remnant pastures, and deer trails. Invasion may be occurring, but too slowly to be clearly evidenced yet because of the longevity of the dominant native trees. Factors that may be stopping or slowing invasion include competition in gaps with native species, browsing by introduced deer, unfavorable soil, allelopathy, and natural enemies or other idiosyncratic factors for particular species. The absence of substantial invasion so far is no guarantee against future invasion, particularly if some major natural or anthropogenous disturbance were to occur.  相似文献   

9.
Vertebrate fauna was studied over 10 years following revegetation of a Eucalyptus tereticornis ecosystem on former agricultural land. We compared four vegetation types: remnant forest, plantings of a mix of native tree species on cleared land, natural regeneration of partially cleared land after livestock removal, and cleared pasture land with scattered paddock trees managed for livestock production. Pasture differed significantly from remnant in both bird and nonbird fauna. Although 10 years of ecosystem restoration is relatively short term in the restoration process, in this time bird assemblages in plantings and natural regeneration had diverged significantly from pasture, but still differed significantly from remnant. After 10 years, 70 and 66% of the total vertebrate species found in remnant had been recorded in plantings and natural regeneration, respectively. Although the fauna assemblages within plantings and natural regeneration were tracking toward those of remnant, significant differences in fauna between plantings and natural regeneration indicated community development along different restoration pathways. Because natural regeneration contained more mature trees (dbh > 30 cm), native shrub species, and coarse woody debris than plantings from the beginning of the study, these features possibly encouraged different fauna to the revegetation areas from the outset. The ability of plantings and natural regeneration to transition to the remnant state will be governed by a number of factors that were significant in the analyses, including shrub cover, herbaceous biomass, tree hollows, time since fire, and landscape condition. Both active and passive restoration produced significant change from the cleared state in the short term.  相似文献   

10.
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.  相似文献   

11.
Habitat fragmentation results in landscape configuration, which affects the species that inhabit it. As a consequence, natural habitat is replaced by different anthropogenic plantation types (e.g. pasture, agriculture, forestry plantations and urban areas). Anthropogenic plantations are important for biodiversity maintenance because some species or functional groups can use it as a complementary habitat. However, depending on plantation permeability, it can act as a barrier to the movement of organisms between habitat patches, such as forest fragments, reducing functional connectivity for many species. Anthropogenic plantations are becoming the most common land use and cover type in the Anthropocene and biodiversity conservation in fragmented landscapes requires information on how different plantation types affect the capacity of the species to move through the landscape. In this study, we evaluated the influence of the type and structure of plantations on the movement of two forest‐dependent understory bird species – plain antvireo (Dysithamnus mentalis) and flavescent warbler (Myiothlyps flaveola) – within a highly fragmented landscape of Atlantic Forest hotspot. Knowing that forestry plantation is assumed to be more permeable to dependent forest bird species than open ones, we selected six study areas containing a forest fragment and surrounding plantation: three with sugarcane plantation and three with Eucalyptus sp. plantation. We used playback calls to stimulate the birds to leave forest fragments and traverse the plantations. Control trials were also carried out inside the forest fragments to compare the distances crossed. We observed that individuals moved longer distances inside forest than between plantation types, which demonstrate that plantations do constrict the movements of both species. The two plantation types equally impeded the movements of the species, suggesting the opposite of the general assumption that forestry plantations are more permeable. Our results indicate that, for generalist species, plantation type does not matter, but its presence negatively impacts movement of these bird species. We highlight that plantations have negative influences on the movements of common bird species, and discuss why this is important when setting conservation priorities.  相似文献   

12.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

13.
Habitat identity and landscape configuration significantly shape species communities and affect ecosystem functions. The conservation of natural ecosystems is of particular relevance in regions where landscapes have already been largely transformed into farmland and where habitats suffer under resource exploitation. The spillover of ecosystem functions from natural ecosystems into farmland may positively influence agricultural productivity and human livelihood quality. We measured three proxies of ecosystem functioning: Pollinator diversity (using pan traps), seed dispersal (with a seed removal experiment), and predation (using dummy caterpillars). We assessed these ecosystem functions in three forest types of the East African dry coastal forest (Brachystegia forest, Cynometra forest, and mixed forest), as well as in adjoining farmland and in plantations of exotic trees (Eucalyptus mainly). We measured ecosystem functions at 20 plots for each habitat type, and along gradients ranging from the forest into farmland. We also recorded various environmental parameters for each study plot. We did not find significant differences of ecosystem functions when combining all proxies assessed, neither among the three natural forest types, nor between natural forest and plantations. However, we found trends for single ecosystem functions. We identified highest pollinator diversity along the forest margin and in farmlands. Vegetation cover and blossom density affected the level of predation positively. Based on our findings, we suggest that flowering gardens around housings and woodlots across farmland areas support ecosystem functioning and thus improve human livelihood quality. We conclude that levels of overall ecosystem functions are affected by entire landscapes, and high landscape heterogeneity, as found in our case, might blur potential negative effects and trends arising from habitat destruction and degradation.  相似文献   

14.
Biological legacies soften pine plantation effects for bryophytes   总被引:1,自引:0,他引:1  
Biological legacies are organic structures and patterns remaining after a disturbance that may contribute to the complexity of the recovering vegetation. Legacies may, in turn, reduce the impacts of human disturbances such as logging and habitat transformation on elements of biodiversity. To examine the effects of biological legacies on biotic responses after disturbance, we surveyed 32 sites for bryophytes in an area subject to large-scale conversion of native eucalypt forest to exotic Pinus radiata D. Don plantations in eastern Australia. We sampled bryophyte and substrate diversity (log, bare ground, upturned tree/log, and trees) in eight sites in each of four landscape context classes: pine plantation stands, elliptical-shaped remnants, strip-shaped remnants, and controls in a large area of contiguous, unmanaged eucalypt forest. We found a muted response by individual species of bryophyte to landscape context. We attribute this, in part, to the presence of logs in the intensively managed pine plantation sites. The boost in bryophyte diversity from species on logs meant that some pine sites supported similar species composition to the continuous eucalypt forest controls. Our findings also underline the importance of local controls and structural variation, including leaving logs and native trees in plantations, for enhancing bryophyte species richness in managed landscapes.  相似文献   

15.
Large‐scale forest restoration relies on approaches that are cost‐effective and economically attractive to farmers, and in this context agroforestry systems may be a valuable option. Here, we compared ecological outcomes among (1) 12–15‐year‐old coffee agroforests established with several native shade trees, (2) 12–15‐year‐old high‐diversity restoration plantations, and (3) reference old‐growth forests, within a landscape restoration project in the Pontal do Paranapanema region, in the Atlantic Forest of southeastern Brazil. We compared the aboveground biomass, canopy cover, and abundance, richness, and composition of trees, and the regenerating saplings in the three forest types. In addition, we investigated the landscape drivers of natural regeneration in the restoration plantations and coffee agroforests. Reference forests had a higher abundance of trees and regenerating saplings, but had similar levels of species richness compared to coffee agroforests. High‐diversity agroforests and restoration plantations did not differ in tree abundance. However, compared to restoration plantations, agroforests showed higher abundance and species richness of regenerating saplings, a higher proportion of animal‐dispersed species, and higher canopy cover. The abundance of regenerating saplings declined with increasing density of coffee plants, thus indicating a potential trade‐off between productivity and ecological benefits. High‐diversity coffee agroforests provide a cost‐effective and ecologically viable alternative to high‐diversity native tree plantations for large‐scale forest restoration within agricultural landscapes managed by local communities, and should be included as part of the portfolio of reforestation options used to promote the global agenda on forest and landscape restoration.  相似文献   

16.
The naturally regenerated native woody species diversity was studied ineucalypt plantations at Menagesha, where there was remnant natural forest, and atChancho, where natural forests were absent. A total of 22 and 20 woody speciesbelonging to 18 and 17 families were found, and of these species, treesaccounted for 68 and 55% at Menagesha and Chancho, respectively. About 83% ofthe woody species found in the adjacent natural forest, including importanttimber species were represented in the eucalypt understory at Menagesha.However, the relative abundance of species in eucalypt plantations and theadjacent natural forest varied considerably. Woody species richness andabundance of sample plots at Menagesha were on average 2.4 times and 5.7times higher, respectively, than the sample plots at Chancho. This resultdemonstrates the crucial role of the remnant small patches of natural forest,as a source of diaspores for the restoration of the woody species diversity indegraded areas of the Ethiopian highlands. There was no significant differencein woody species diversity between the eucalypt stand margin and centre. Theunderstory woody species density in eucalypt plantations was up to 8325stems/ha, indicating that the numerous eucalypt stands have a highpotential for restoring the woody species diversity in the Ethiopian highlands.In order to fully re-establish the diverse and economically valuable naturalforest, complementary measures such as enrichment planting of missing primaryforest species may be required.  相似文献   

17.
Tree plantations for commercial use have been replacing native ecosystems all over the world. We investigated how forest conversion to plantations of exotic and native tree species may influence lichen diversity and composition in a southern Brazilian landscape. The lichen community from the National Forest of São Francisco de Paula was studied using three stands of each of the four vegetation types: native Araucaria forest and plantations of Araucaria, Pine and Eucalyptus trees. All plantation stands were surrounded by native Araucaria forest, were of smaller size and were allowed to endure longer than commercially managed plantations. Lichen species and their cover abundance were recorded on tree trunks from 30 to 150 cm above soil level in ten host-trees that were randomly selected in each replication. Seventy-eight lichen species, from 18 genera and 9 families, were registered. Conversion of native forest to plantations of exotic tree species altered species composition by reducing the occurrence of shade tolerant lichens. Plantations of Araucaria angustifolia sustained the highest lichen diversity measured, because this is an excellent host species. These results suggest that a greater diversity of lichens can be preserved in the landscape, if plantations of the exotic Pinus and Eucalyptus genera are replaced by plantations of this native species.  相似文献   

18.
Changes in land use patterns and vegetation can trigger ecological change in occupancy and community composition. Among the potential ecological consequences of land use change is altered susceptibility to occupancy by invasive species. We investigated the responses of three introduced mammals (red deer, Cervus elaphus; wild boar, Sus scrofa; and European hare, Lepus europaeus) to replacement of native vegetation by exotic pine plantations in the Patagonian forest‐steppe ecotone using camera‐trap surveys (8633 trap‐days). We used logistic regression models to relate species presence with habitat variables at stand and landscape scales. Red deer and wild boar used pine plantations significantly more frequently than native vegetation. In contrast, occurrence of European hares did not differ between pine plantations and native vegetation, although hares were recorded more frequently in firebreaks than in plantations or native vegetation. Presence of red deer and wild boar was positively associated with cover of pine plantations at the landscape scale, and negatively associated with mid‐storey cover and diversity at the stand scale. European hares preferred sites with low arboreal and mid‐storey cover. Our results suggest that pine plantations promote increased abundances of invasive species whose original distributions are associated with woodlands (red deer and wild boar), and could act as source or pathways for invasive species to new areas.  相似文献   

19.
The mechanisms affecting forest regeneration in human-modified landscapes are attracting increasing attention as tropical forests have been recognized as key habitats for biodiversity conservation, provision of ecosystem services, and human well-being. Here we investigate the effect of the leaf-cutting ants (LCA) Atta opaciceps on regenerating plant assemblages in Caatinga dry forest. Our study encompassed 15 Atta opaciceps colonies located in landscape patches with a gradient of forest cover from 8.7% to 87.8%, where we monitored regenerating individuals (seedlings and saplings of woody and herbaceous plants) in different habitats (nests, foraging areas, and control areas) over one year. We recorded 2,977 regenerating plant individuals, distributed among 55 species from 23 families. Herbaceous plants represented 82.1% and 58.2% of the total number of individuals and species, respectively. Species richness of both the whole and herbaceous plant assemblages increased along the forest cover gradient, but without difference between the habitats. Total plant abundance was highest in control areas followed by foraging areas and nests and this pattern held for both woody and herbaceous plants. Although forest cover did not influence the abundance of herbaceous plants and the whole plant assemblage, it positively affects woody plant abundance across control areas. Forest cover and habitat changed species composition of both the entire regenerating and the herbaceous assemblages. These results together indicate that LCA negatively impact regenerating plant assemblages, particularly in those sites with increased forest cover. As LCA proliferate in human-modified landscapes, they may prevent plant regeneration of disturbed areas.  相似文献   

20.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号