首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The RHO1 gene encodes a homologue of mammalian RhoA small G-protein in the yeast Saccharomyces cerevisiae. Rho1p is required for bud formation and is localized at a bud tip or a cytokinesis site. We have recently shown that Bni1p is a potential target of Rho1p. Bni1p shares the FH1 and FH2 domains with proteins involved in cytokinesis or establishment of cell polarity. In S. cerevisiae, there is an open reading frame (YIL159W) which encodes another protein having the FH1 and FH2 domains and we have named this gene BNR1 (BNI1 Related). Bnr1p interacts with another Rho family member, Rho4p, but not with Rho1p. Disruption of BNI1 or BNR1 does not show any deleterious effect on cell growth, but the bni1 bnr1 mutant shows a severe temperature-sensitive growth phenotype. Cells of the bni1 bnr1 mutant arrested at the restrictive temperature are deficient in bud emergence, exhibit a random distribution of cortical actin patches and often become multinucleate. These phenotypes are similar to those of the mutant of PFY1, which encodes profilin, an actin-binding protein. Moreover, yeast two-hybrid and biochemical studies demonstrate that Bni1p and Bnr1p interact directly with profilin at the FH1 domains. These results indicate that Bni1p and Bnr1p are potential targets of the Rho family members, interact with profilin and regulate the reorganization of actin cytoskeleton.  相似文献   

2.
The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two-hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP-bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature-sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p.  相似文献   

3.
Rho1p is a yeast homolog of mammalian RhoA small GTP-binding protein. Rho1p is localized at the growth sites and required for bud formation. We have recently shown that Bni1p is a potential target of Rho1p and that Bni1p regulates reorganization of the actin cytoskeleton through interactions with profilin, an actin monomer-binding protein. Using the yeast two-hybrid screening system, we cloned a gene encoding a protein that interacted with Bni1p. This protein, Spa2p, was known to be localized at the bud tip and to be implicated in the establishment of cell polarity. The C-terminal 254 amino acid region of Spa2p, Spa2p(1213–1466), directly bound to a 162-amino acid region of Bni1p, Bni1p(826–987). Genetic analyses revealed that both the bni1 and spa2 mutations showed synthetic lethal interactions with mutations in the genes encoding components of the Pkc1p-mitogen-activated protein kinase pathway, in which Pkc1p is another target of Rho1p. Immunofluorescence microscopic analysis showed that Bni1p was localized at the bud tip in wild-type cells. However, in the spa2 mutant, Bni1p was not localized at the bud tip and instead localized diffusely in the cytoplasm. A mutant Bni1p, which lacked the Rho1p-binding region, also failed to be localized at the bud tip. These results indicate that both Rho1p and Spa2p are involved in the localization of Bni1p at the growth sites where Rho1p regulates reorganization of the actin cytoskeleton through Bni1p.  相似文献   

4.
Formin homology (FH) proteins are implicated in cell polarization and cytokinesis through actin organization. There are two FH proteins in the yeast Saccharomyces cerevisiae, Bni1p and Bnr1p. Bni1p physically interacts with Rho family small G proteins (Rho1p and Cdc42p), actin, two actin-binding proteins (profilin and Bud6p), and a polarity protein (Spa2p). Here we analyzed the in vivo localization of Bni1p by using a time-lapse imaging system and investigated the regulatory mechanisms of Bni1p localization and function in relation to these interacting proteins. Bni1p fused with green fluorescent protein localized to the sites of cell growth throughout the cell cycle. In a small-budded cell, Bni1p moved along the bud cortex. This dynamic localization of Bni1p coincided with the apparent site of bud growth. A bni1-disrupted cell showed a defect in directed growth to the pre-bud site and to the bud tip (apical growth), causing its abnormally spherical cell shape and thick bud neck. Bni1p localization at the bud tips was absolutely dependent on Cdc42p, largely dependent on Spa2p and actin filaments, and partly dependent on Bud6p, but scarcely dependent on polarized cortical actin patches or Rho1p. These results indicate that Bni1p regulates polarized growth within the bud through its unique and dynamic pattern of localization, dependent on multiple factors, including Cdc42p, Spa2p, Bud6p, and the actin cytoskeleton.  相似文献   

5.
Formins are downstream effector proteins of Rho-type GTPases and are involved in the organization of the actin cytoskeleton and actin cable assembly at sites of polarized cell growth. Here we show using in vivo time-lapse microscopy that deletion of the Candida albicans formin homolog BNI1 results in polarity defects during yeast growth and hyphal stages. Deletion of the second C. albicans formin, BNR1, resulted in elongated yeast cells with cell separation defects but did not interfere with the ability of bnr1 cells to initiate and maintain polarized hyphal growth. Yeast bni1 cells were swollen, showed an increased random budding pattern, and had a severe defect in cytokinesis, with enlarged bud necks. Induction of hyphal development in bni1 cells resulted in germ tube formation but was halted at the step of polarity maintenance. Bni1-green fluorescent protein is found persistently at the hyphal tip and colocalizes with a structure resembling the Spitzenk?rper of true filamentous fungi. Introduction of constitutively active ras1G13V in the bni1 strain or addition of cyclic AMP to the growth medium did not bypass bni1 hyphal growth defects. Similarly, these agents were not able to suppress hyphal growth defects in the wal1 mutant which is lacking the Wiskott-Aldrich syndrome protein (WASP) homolog. These results suggest that the maintenance of polarized hyphal growth in C. albicans requires coordinated regulation of two actin cytoskeletal pathways, including formin-mediated secretion and WASP-dependent endocytosis.  相似文献   

6.
In the yeast Saccharomyces cerevisiae, positioning of the mitotic spindle requires both the cytoplasmic microtubules and actin. Kar9p is a novel cortical protein that is required for the correct position of the mitotic spindle and the orientation of the cytoplasmic microtubules. Green fluorescent protein (GFP)- Kar9p localizes to a single spot at the tip of the growing bud and the mating projection. However, the cortical localization of Kar9p does not require microtubules (Miller, R.K., and M.D. Rose. 1998. J. Cell Biol. 140: 377), suggesting that Kar9p interacts with other proteins at the cortex. To investigate Kar9p's cortical interactions, we treated cells with the actin-depolymerizing drug, latrunculin-A. In both shmoos and mitotic cells, Kar9p's cortical localization was completely dependent on polymerized actin. Kar9p localization was also altered by mutations in four genes, spa2Delta, pea2Delta, bud6Delta, and bni1Delta, required for normal polarization and actin cytoskeleton functions and, of these, bni1Delta affected Kar9p localization most severely. Like kar9Delta, bni1Delta mutants exhibited nuclear positioning defects during mitosis and in shmoos. Furthermore, like kar9Delta, the bni1Delta mutant exhibited misoriented cytoplasmic microtubules in shmoos. Genetic analysis placed BNI1 in the KAR9 pathway for nuclear migration. However, analysis of kar9Delta bni1Delta double mutants suggested that Kar9p retained some function in bni1Delta mitotic cells. Unlike the polarization mutants, kar9Delta shmoos had a normal morphology and diploids budded in the correct bipolar pattern. Furthermore, Bni1p localized normally in kar9Delta. We conclude that Kar9p's function is specific for cytoplasmic microtubule orientation and that Kar9p's role in nuclear positioning is to coordinate the interactions between the actin and microtubule networks.  相似文献   

7.
In budding yeast, G2/M transition is tightly correlated with bud morphogenesis regulated by Swe1 and septin that plays as a scaffold to recruits protein components. BNI5 isolated as a suppressor for septin defect is implicated in septin organization and cytokinesis. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we show that Bni5 phosphorylation is required for mitotic entry regulated by Swe1 pathway. Bni5 modification was evident from late mitosis to G1 phase, and CIP treatment in vitro of affinity-purified Bni5 removed the modification, indicative of phosphorylation on Bni5. The phosphorylation-deficient mutant of BNI5 (bni5-4A) was defective in both growth at semi-restrictive temperature and suppression of septin defect. Loss of Bni5 phosphorylation resulted in abnormal bud morphology and cell cycle delay at G2 phase, as evidenced by the formation of elongated cells with multinuclei. However, deletion of Swe1 completely eliminated the elongated-bud phenotypes of both bni5 deletion and bni5-4A mutants. These results suggest that the bud morphogenesis and mitotic entry are positively regulated by phosphorylation-dependent function of Bni5 which is under the control of Swe1 morphogenesis pathway.  相似文献   

8.
A formin Bni1p nucleates actin to assemble actin cables, which guide the polarized transport of secretory vesicles in budding yeast. We identified mutations that suppressed both the lethality and the excessive actin cable formation caused by overexpression of a truncated Bni1p (BNI1DeltaN). Two recessive mutations, act1-301 in the actin gene and sla2-82 in a gene involved in cortical actin patch assembly, were identified. The isolation of sla2-82 was unexpected, because cortical actin patches are required for the internalization step of endocytosis. Both act1-301 and sla2-82 exhibited synthetic growth defects with bni1Delta. act1-301, which resulted in an E117K substitution, interacted genetically with mutations in profilin (PFY1) and BUD6, suggesting that Act1-301p was not fully functional in formin-mediated polymerization. sla2-82 also interacted genetically with genes involved in actin cable assembly. Some experiments, however, suggested that the effects of sla2-82 were caused by depletion of actin monomers, because the temperature-sensitive growth phenotype of the bni1Delta sla2-82 mutant was suppressed by increased expression of ACT1. The isolation of suppressors of the BNI1DeltaN phenotype may provide a useful system for identification of actin amino-acid residues that are important for formin-mediated actin polymerization and mutations that affect the availability of actin monomers.  相似文献   

9.
Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Delta cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Delta cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.  相似文献   

10.
During mating, budding yeast cells reorient growth toward the highest concentration of pheromone. Bni1p, a formin homologue, is required for this polarized growth by facilitating cortical actin cable assembly. Fus3p, a pheromone-activated MAP kinase, is required for pheromone signaling and cell fusion. We show that Fus3p phosphorylates Bni1p in vitro, and phosphorylation of Bni1p in vivo during the pheromone response is dependent on Fus3p. fus3 mutants exhibited multiple phenotypes similar to bni1 mutants, including defects in actin and cell polarization, as well as Kar9p and cytoplasmic microtubule localization. Disruption of the interaction between Fus3p and the receptor-associated Galpha subunit caused similar mutant phenotypes. After pheromone treatment, Bni1p-GFP and Spa2p failed to localize to the cortex of fus3 mutants, and cell wall growth became completely unpolarized. Bni1p overexpression suppressed the actin assembly, cell polarization, and cell fusion defects. These data suggest a model wherein activated Fus3p is recruited back to the cortex, where it activates Bni1p to promote polarization and cell fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号